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Experimental quantum speed-up in 
reinforcement learning agents

V. Saggio1 ✉, B. E. Asenbeck1, A. Hamann2, T. Strömberg1, P. Schiansky1, V. Dunjko3, N. Friis4, 
N. C. Harris5, M. Hochberg6, D. Englund5, S. Wölk2,7, H. J. Briegel2,8 & P. Walther1,9 ✉

As the field of artificial intelligence advances, the demand for algorithms that can 
learn quickly and efficiently increases. An important paradigm within artificial 
intelligence is reinforcement learning1, where decision-making entities called agents 
interact with environments and learn by updating their behaviour on the basis of the 
obtained feedback. The crucial question for practical applications is how fast agents 
learn2. Although various studies have made use of quantum mechanics to speed up 
the agent’s decision-making process3,4, a reduction in learning time has not yet been 
demonstrated. Here we present a reinforcement learning experiment in which the 
learning process of an agent is sped up by using a quantum communication channel 
with the environment. We further show that combining this scenario with classical 
communication enables the evaluation of this improvement and allows optimal 
control of the learning progress. We implement this learning protocol on a compact 
and fully tunable integrated nanophotonic processor. The device interfaces with 
telecommunication-wavelength photons and features a fast active-feedback 
mechanism, demonstrating the agent’s systematic quantum advantage in a setup that 
could readily be integrated within future large-scale quantum communication 
networks.

Rapid advances in the field of machine learning and in general artifi-
cial intelligence (AI) are paving the way towards intelligent algorithms 
and automation. An important paradigm within AI is reinforcement 
learning (RL), where decision-making entities called ‘agents’ inter-
act with an environment, ‘learning’ to achieve a goal via feedback1. 
Whenever the agent performs well (that is, makes the right deci-
sion), the environment rewards its behaviour, and the agent uses 
this information to progressively increase the likelihood of accom-
plishing its task. In this sense, an agent ‘learns’ by ‘reinforcement’. RL 
has applications in many sectors, from robotics5,6 to the healthcare 
domain7, to brain-like computing simulation8 and neural network 
implementations6,9. In addition, the celebrated AlphaGo algorithm10, 
which is able to beat even the most skilled human players at the game 
of Go, employs RL.

At the same time, quantum technologies have experienced remark-
able progress11. At the heart of quantum mechanics lies the superposi-
tion principle, dictating that even the simplest, two-dimensional 
quantum system is described by a continuum of infinitely many pos-
sible choices via a state vector ψ α β⟩ = 0⟩ + 1⟩ with the complex num-
bers α and β satisfying α β+ = 12 2 , while only two possible states, 0⟩ 
and 1⟩, exist classically. Advantageous RL algorithms12,13 inspired by 
quantum mechanics have been successful in aiding problems in quan-
tum information processing, for example, decoding of errors14–16, quan-
tum feedback17, adaptive code-design18, quantum-state reconstruction19  

and even the design of quantum experiments20,21. Conversely, quantum 
technologies have enabled quadratically faster decision-making  
processes for RL agents via the quantization of their internal  
hardware3,4,22,23.

In all of these applications, agent and environment interact entirely 
classically. Here we consider a novel RL setting where they can also 
interact quantumly, formally via a quantum channel2. We therefore 
introduce a quantum-enhanced hybrid agent capable of quantum as 
well as classical information transfer. This makes it possible to achieve 
and quantify a quantum speed-up in the agent’s learning time with 
respect to RL based solely on classical interaction.

We realize this protocol using a fully programmable nanophotonic 
processor interfaced with photons at telecommunication wavelengths. 
The setup enables the implementation of active-feedback mechanisms, 
thus proving suitable for demonstrations of RL algorithms. Moreover, 
such photonic platforms hold the potential of integrating RL quantum 
speed-ups in future quantum networks owing to the photons’ telecom-
munication wavelengths. A long-standing goal in the development 
of quantum communication lies in establishing a form of ‘quantum 
internet’24,25, a highly interconnected network able to distribute and 
manipulate quantum states via optical links. We therefore envisage 
AI and RL to play important roles in future quantum networks, includ-
ing a potential quantum internet, much in the same way that AI forms 
integral part of the internet today.
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Quantum-enhanced RL
The conceptual idea of RL is shown in Fig. 1a. A decision-making entity 
called an agent interacts with an environment by receiving perceptual 
input (‘percepts’) si, and outputting specific ‘actions’ ai accordingly, at 
a certain time step i. Different ‘rewards’ r issued by the environment 
for correct combinations of percepts and actions incentivize agents 
to improve their decision-making, and thus to learn1.

Although RL has already been shown amenable to quantum enhance-
ments, the interaction has so far been restricted exclusively to classical 
communication, meaning that signals can only be composed from a 
fixed, discrete alphabet. For signals carried by quantum systems (for 
example, single photons considered here) this corresponds to a fixed 
preferred basis, for example, ‘vertical’ or ‘horizontal’ photon polariza-
tion, as shown in Fig. 1b.

In general, it has been shown that granting agents access to quan-
tum hardware (while still considering classical communication) does 
not reduce the learning time, although it allows actions to be output 
quadratically faster3,4. To achieve reductions in learning times, quantum 
communication becomes necessary.

We therefore consider an environment and a quantum-enhanced 
hybrid agent with access to internal quantum (as well as classical) hard-
ware interacting by exchanging quantum states  a ⟩i , s ⟩i   and  r⟩, represent-
ing actions ai, percepts si and rewards r, respectively. Such agents may 
behave ‘classically’, that is, use a classical channel, or ‘quantumly’, mean-
ing that communication is no longer limited to a fixed preferred basis, 
but allows for exchanges of arbitrary superpositions via a quantum chan-
nel, as shown in Fig. 1c. In general, agents react to (sequences of) percepts 
s ⟩i−1  with (sequences of) actions a ⟩i  according to a policy a sπ( | )i i−1  that 
is updated during the learning process via classical control.

Within this framework, we focus on so-called2 deterministic strictly 
epochal (DSE) learning scenarios, also called episodic instead of 

epochal1. Here ‘epochs’ consist of strings of percepts s = (s0, ..., sL−1) with 
fixed s0, actions a = (a1, ..., aL) of fixed length L, and a final reward r, and 
both s = s(a) and r = r(a) are completely determined by a. Therefore, no 
explicit representation of the percepts is required in our experiment 
(Methods). A non-trivial feature of the DSE scenario is that the effective 
behaviour of the environment can be modelled via a unitary UE (ref. 2) 
on the action and reward registers A and R as

U
r
r

| ⟩ |0⟩ =
| ⟩ |1⟩ if ( ) > 0
| ⟩ |0⟩ if ( ) = 0

⋅ (1)E A R
A R

A R
a

a a
a a





UE is similar to a generalized controlled-NOT gate such that in case of 
rewarded action sequences (r(a) > 0), the reward state is flipped. UE can 
therefore be used to perform a quantum search for such sequences.

A hybrid agent can choose between quantum and classical behaviour 
in each epoch. In classical epochs, the agent prepares the state a⟩ 0⟩A R, 
where a is determined by sampling from a classical probability distribu-
tion p(a) determined by its policy π. With a winning probability

a
a a

∑ε ξ p= sin ( ) = ( ), (2)
r

2

{ | ( )>0}

with ξ ∈ [0, 2π], the agent receives a reward and updates its policy 
according to a rule, presented in equation (4), based on projective 
simulation26 (see also Methods). In quantum epochs, the following 
steps are performed:

(1) The agent prepares the state ψ⟩ − ⟩A R , with a aψ p⟩ = ∑ ( ) ⟩ =aaA A
ξ ℓ ξ wcos( ) ⟩ + sin( ) ⟩A A , and sends it to the environment. w⟩A and ℓ⟩A 

are superpositions of all winning (rewarded) and losing (non-rewarded) 
action sequences, respectively, and − ⟩ = ( 0⟩ − 1⟩ )/ 2R R R .

(2) The environment applies UE from equation (1) to ψ⟩ − ⟩A R, flipping 
the sign of the winning state:

ℓU ψ ξ ξ w| ⟩ | − ⟩ = [cos( )| ⟩ − sin( )| ⟩ ]| − ⟩ , (3)E A R A A R

and returns the resulting state to the agent.
(3) The agent performs a reflection �U ψ ψ= 2 ⟩⟨ −R A A over the initial 

state ψ⟩A.
The last step leads to amplitude amplification similar to Grover’s 

algorithm27 and thus to an increased probability sin2(3ξ) (ref. 28) to find 
rewarded action sequences (Methods). In our experiment, the hybrid 
agent performs a single query (and thus a single step of amplitude 
amplification) during a quantum epoch. However, the general frame-
work allows for multiple steps of amplitude amplification in consecu-
tive quantum epochs.

While quantum epochs lead to an increased winning probability, 
they do not reveal the reward (or corresponding percept sequence, in 
general). The reward can be determined only via classical test epochs, 
where the obtained action sequence is used as input. Thus, the hybrid 
agent alternates between quantum and classical test epochs, updating 
its policy every time a reward is obtained after a test epoch. Such agents 
accomplish their task of finding winning action sequences faster, and 
hence learn faster than entirely classical agents. This approach allows 
us to quantify the speed-up in learning time, which is not possible in 
the general setting discussed in ref. 2. The learning speed-up manifests 
in a reduced average learning time T⟨ ⟩Q, that is, the average number of 
epochs necessary to achieve a certain winning probability PL. In general, 
a quadratic improvement can be achieved if the maximal number of 
coherent interactions between agent and environment scales with the 
problem size (Methods).

Experimental implementation
Quantized RL protocols can be compactly realized using state-of-the-art 
photonic technology29. Nowadays, integrated photonic platforms hold 
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Fig. 1 | Schematic of a learning agent. a, An agent interacts with an 
environment by receiving perceptual input si and outputting actions ai. When 
the correct ai is chosen, the environment issues a reward r that the agent uses to 
enhance its performance in the next round of interaction. b, Agent and 
environment interacting classically, that is, using a classical channel, where 
communication is only possible via a fixed preferred basis (for example, 
vertical or horizontal photon polarization). c, Agent and environment 
interacting via a quantum channel, where arbitrary superposition states are 
exchanged.
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the advantage of providing scalable architectures where many elemen-
tary components can be accommodated on small devices30. Here we 
use a programmable nanophotonic processor comprising 26 wave-
guides fabricated to form 88 Mach–Zehnder interferometers (MZIs). 
An MZI is equipped with two configurable phase shifters as shown in 
Fig. 2a, b, and acts as a tunable beam splitter. Information is spatially 
encoded onto two orthogonal modes 0⟩ = (1, 0)T and 1⟩ = (0, 1)T, which 
constitute the computational basis (T indicates the transpose).

As illustrated in Fig. 2c, pairs of single photons are generated (at tel-
ecommunication wavelengths) from a single-photon source. One photon 
is coupled into a waveguide and then detected by single-photon detectors 
D1, D2 or D3, while the other one is sent to D0 for heralding (that is, clicks 
in detectors D1, D2 or D3 are registered in coincidence with clicks in D0). 
The detectors are superconducting nanowires with efficiencies of up to 

roughly 90% (see Methods for experimental details). The processor is 
divided into three regions, where the first and last are assigned to the 
agent, and the middle region to the environment, to carry out, in quantum 
epochs, steps 1–3 listed above. The agent is further equipped with a classi-
cal control mechanism (a feedback loop) that updates its learning policy.

In our experiment, we represent the winning and losing action states 
w⟩A and ℓ⟩A by a single qubit via w1⟩ = ⟩A A  and  ℓ0⟩ = ⟩A A, and use another 
qubit to encode the reward ( 0⟩ , 1⟩ )R R . This results in a four-level system, 
where each level is a waveguide in our processor, as shown in Fig. 3. 
The winning probability for the agent is initially set to ε = sin2(ξ) = 0.01, 
representing a single rewarded action sequence out of 100. After a 
single photon is coupled into the mode 0 0 ⟩A R , the agent creates the 
state ψ ξ ξ⟩ = (cos( ) 0⟩ + sin( ) 1⟩ ) 0⟩A A A R by applying a unitary UP. Next, 
it can decide to play classically or quantum mechanically.
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Fig. 2 | Experimental setup. a, Single programmable unit consisting of an MZI 
equipped with two fully tunable phase shifters, one internal allowing for a scan 
of the output distribution over θ ∈ [0, 2π], and one external dictating the 
relative phase ϕ ∈ [0, 2π] between the two output modes. This makes the MZI 
act as a fully tunable beam splitter and allows for coherent implementation of 
sequences of quantum gates. b, Image of a single MZI in the processor. The 
third phase shifter in the bottom arm of the interferometer is not used.  
c, Overview of the setup. A single-photon source generates single-photon pairs 
at telecommunication wavelength. One photon is sent to a single-photon 
detector D0, while the other one is coupled into the processor and undergoes 

the desired computation. It is then detected, in coincidence with the photon in 
D0, either in detector D1 or in D2/D3 after the agent plays the classical/quantum 
strategy (see Fig. 3 for more details). The coincidence events are recorded with 
a custom-made TTM. Different areas of the processor are assigned to either the 
agent or the environment, which can perform a Grover-like quantum search to 
look for rewarded action sequences in quantum epochs. The bottom part of the 
figure represents the Grover quantum circuit, where H indicates Hadamard 
gates creating quantum superpositions and n represents the number of target 
qubits. The agent has access to a classical control that updates its policy.
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Fig. 3 | Circuit implementation. a, b, One photon is coupled into the 0 0 ⟩A R  
waveguide and undergoes different operators depending on whether a 
classical (a) or a quantum (b) epoch is implemented. The waveguides 

highlighted in yellow show the photon’s possible paths. Identity gates are 
represented by straight waveguides. Only the part of the processor needed for 
the computation is illustrated.
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In a classical strategy, the environment flips the reward qubit only if 
the action qubit is in the winning state via UE (Fig. 3a). Next, the photon 
is coupled out and detected in either D1 or D2 with probability cos2(ξ) 
and sin2(ξ), respectively. If D2 is triggered (that is, the agent has been 
rewarded), a feedback mechanism updates the policy π by updating 
the winning probability εj after having obtained j rewards as

ε
j

j
=

1 + 2
100 + 2

. (4)j

π is related to p(a), and therefore to ε, via equation (5) (Methods).
In a quantum strategy, after the reward qubit is rotated to − ⟩R via two 

operators UH0 and UH1, the environment acts as an oracle via UE as in equa-
tion (3). Consecutively, the agent reverses the effect of UH0 and UH1, and 
performs the reflection UR (Fig. 3b). Measuring in the computational 
basis of the action register then leads to the detection of a rewarded 
action sequence with increased probability sin2(3ξ) in D3. For practical 
reasons, the classical test epoch is implemented only in software (Meth-
ods). The update rule remains the same as in the classical case.

In general, any Grover-like algorithm faces a drop in amplitude ampli-
fication after the optimal point is reached. As different agents will reach 
this optimal point in different epochs, one can identify the probability 
ε = 0.396 until which it is beneficial for all agents to use a quantum 
strategy, as they will observe more rewards than in the classical strat-
egy on average (Methods). When this probability is surpassed, it is 
advantageous to switch to an entirely classical strategy. This combined 
strategy thus avoids the typical amplitude amplification drop without 
introducing additional overheads in terms of experimental resources.

Results
At the end of each classical epoch, we record outcomes 1 and 0 for 
the rewarded and non-rewarded behaviour, respectively, obtaining a 

binary sequence whose length equals the number of played epochs in 
the classical learning strategy and half of the number of played epochs 
in the quantum strategy (as here two epochs, quantum and classical 
test, are needed to obtain the reward). For a fair comparison between 
these scenarios, in the quantum strategy, the reward is distributed (that 
is, averaged) over the quantum and classical test epochs. The reward is 
then averaged over different independent agents. Figure 4 shows this 
average reward η for the different learning strategies.

The theoretical data are simulated for n = 10,000 agents and the 
experimental data obtained from n = 165. Figure 4a visualizes the quan-
tum improvement originating from the use of amplitude amplification 
compared with a purely classical strategy. For completeness, the com-
parison between not distributing and distributing the reward over two 
epochs in the quantum strategy is shown in Fig. 4b, c.

When ε = 0.396, η for the quantum strategy starts decreasing, as vis-
ible in Fig. 4a. Our setup allows the agents to choose the favourable 
strategy by switching from quantum to classical when the latter becomes 
advantageous. This combined strategy outperforms the purely classical 
scenario, as shown in Fig. 4d. As previously discussed, a certain winning 
probability PL has to be defined to quantify the learning time. Choosing 
PL = 0.37 (note however, that any probability below ε = 0.396 can be cho-
sen), the learning time T⟨ ⟩ for PL decreases from T⟨ ⟩C = 270 in the classi-
cal strategy to T⟨ ⟩Q = 100 in the combined strategy. This implies a 
reduction of 63%, which fits well to the theoretical values T C

theory = 293 
and T Q

theory = 97, accounting for small experimental imperfections.
In general, hybrid agents can experience a quadratic speed-up in their 

learning time if arbitrary numbers of coherent Grover iterations can 
be performed, even if the number of rewarded actions is unknown31.

Conclusions
We have demonstrated an RL protocol where an agent can boost its 
performance by allowing quantum communication with the 
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quantum strategy (b), compared with the case where the reward is distributed 
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standard errors. d, Comparison between the classical (orange) and combined 
(green) strategy, where an advantage over the classical strategy is visible. Here 
the agents stop the quantum strategy at their best performance (at ε = 0.396) 
and continue playing classically. The inset shows the point where agents 
playing the quantum strategy reach the winning probability PL = 0.37, after 

T⟨ ⟩Q = 100 epochs.
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environment. This enables a quantum speed-up in its learning time 
and optimal control of the learning process. Emerging photonic tech-
nology provides the advantages of compactness, tunability and low-loss 
communication, thus proving suitable for RL algorithms where 
active-feedback mechanisms, even over long distances, need to be 
implemented. Future scaled-up implementations of our protocol rely 
on a linearly increasing number of waveguides with the action space 
size when considering action sequences of length L = 1, and the use of 
just a single photon. In this case, a learning task with N different actions 
requires a processor with 2N modes, while 3N + 1 or maximally 

N N(3 + 1)π
4  gates are needed for a single or multiple rounds of ampli-
tude amplification, respectively. In general, multiple photons will be 
required to deal with a combinatorially big space of action sequences 
of arbitrary length L. We envision our protocol to aid specifically in 
problems where frequent search is needed, for example, network rout-
ing problems, where, for instance, tens of qubits, waveguides and 
detectors would be employed to represent search spaces of 104 ele-
ments. In general, the development of superconducting detectors, 
on-demand single-photon sources32 or the large-scale integration of 
artificial atoms within photonic circuits33 suggest substantial steps 
towards scalable multiphoton applications. Although photonic archi-
tectures are particularly suitable for such learning algorithms, our 
theoretical background is applicable to different platforms, for exam-
ple, trapped ions or superconducting qubits. Here future realizations 
can feature the implementation of agent and environment as spatially 
separated systems, and a light–matter quantum interface for coherent 
exchange between them24,34.
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Methods

Quantum enhancement in RL agents
Here we present an explicit method for combining a classical agent 
with quantum amplitude amplification. Introducing a feedback loop 
between classical policy update and quantum amplitude amplifica-
tion, we are able to determine achievable improvements in sample 
complexity, and thus in learning time. In addition, the final policy 
of our agent has properties similar to those of the underlying clas-
sical agent, leading to a comparable behaviour as discussed in more 
detail in A.H. et al. (manuscript in preparation; which is dedicated 
to discussing the theoretical background of the hybrid agent more 
specifically).

In the following, we focus on simple DSE environments, where the 
interaction between the agent and the environment is structured 
into epochs. Each epoch starts with the same percept s0, and at each 
time step i an action–percept pair (ai, si) is exchanged. Many interest-
ing environments are epochal, for example, in applications of RL to 
quantum physics21,35–37 or popular problems such as playing Go10. At 
the end of each epoch, after L action–percept pairs are communi-
cated, the agent receives a reward r ∈ {0, 1}. The rules of the game are 
deterministic and time independent, such that performing a specific 
action ai after receiving a percept si−1 always leads to the same follow-
ing percept si.

The behaviour of an agent is determined by its policy described by 
the probability π(ai|si−1) to perform the action ai given the percept si−1. 
In deterministic settings, the percept si is completely determined by all 
previously performed actions a1, ⋅⋅⋅, ai such that π(ai|si−1) = π(ai|a1, ⋅⋅⋅, ai−1).  
Thus, the behaviour of the agent within one epoch is described by action 
sequences a = (a1, ..., aL) and their corresponding probabilities

a ∏p a a a( ) = π( | , , ). (5)
i

L

i i
=1

1 −1⋯

Our learning agent uses a policy based on projective simulation26, 
where each action sequence a is associated with a weight factor h(a) 
initialized to h = 1. Its policy is defined via the probability distribution

p
h

h
( ) =

( )
∑ ( ′)

. (6)
′

a
a

aa

In our experiment, the initial winning probability ε is given by

a
a

aa a

a a

a
∑ε p

h

h
= ( ) =

∑ ( )

∑ ( )
(7)

r

r

{ | ( )>0}

{ | ( )>0}

{ }

and is set to 1/100. If the agent has chosen the sequence a, it updates 
the corresponding weight factor via

h h λr( ) → ( ) + ( ), (8)a a a

where λ  =  2 in our experiment and r(a)  =  1 (0) if a is rewarded 
(non-rewarded). Thus, the winning probability after the agent has found 
j rewards is given by equation (4). In general, the update method for 
quantum-enhanced agents is not limited to projective simulation and 
can be used to enhance any classical learning scenario, provided that 
p(a) exists and that the update rule is solely based on the observed 
rewards. We generalize the given learning problem to the quantum 
domain by encoding different action sequences a into orthogonal 
quantum states ⟩a  defining our computational basis. In addition, we 
create a fair unitary oracular variant of the environment2, whose effec-
tive behaviour on the action register can be described by UE

͠  as

͠ 



U
r
r

⟩ =
− ⟩ if ( ) > 0

⟩ if ( ) = 0
. (9)E a

a a
a a

The unitary oracle U͠E can be used to perform, for instance, a Grover 
search or amplitude amplification for rewarded action sequences by 
performing Grover iterations

�U ψ ψ U= (2| ⟩⟨ | − ) ~ (10)G E

on an initial state ψ⟩. A quantum-enhanced agent with access to UE
͠  can 

thus find rewarded action sequences faster than a corresponding clas-
sical agent defined by the same initial policy π(ai|si−1) and update rules.

In general, the optimal number k of Grover iterations U ψ⟩k
G  depends 

on the winning probability ε via k ε∝ 1/  (ref. 27). In the following, we 
assume that ε is known at least to a good approximation. This is, for 
instance, possible if the number of rewarded action sequences is 
known. However, a similar agent can also be developed if ε is unknown 
by adapting methods from ref. 31 as described in A.H. et al. (manuscript 
in preparation).

Description of the agent. A quantum-enhanced hybrid agent is con-
structed via the following steps:

(1) Given the classical probability distribution p(a), determine the 
winning probability ε = sin2(ξ) based on the current policy and prepare 
the quantum state in the action register:

∑ψ p| ⟩ = ( ) | ⟩ (11)
{ }

a a
a

ξ ξ w= cos( )| ⟩ + sin( )| ⟩. (12)ℓ

Here the quantum states

a a
a a

∑ p| ⟩ ∝ ( ) | ⟩, (13)
r{ | ( )=0}

ℓ

a a
a a

∑w p| ⟩ ∝ ( ) | ⟩, (14)
r{ | ( )>0}

contain all losing and winning components, respectively. In our exper-
iment, we identify ℓ⟩ = 0⟩�  and �w⟩ = 1⟩. The task assigned to the agent 
is to (learn to) perform the winning sequences w⟩ via policy update. 
This translates to a maximization of the obtained reward.

(2) Apply the optimal number k ε( ) of Grover iterations leading to

ψ U ψ| ′⟩ = | ⟩, (15)k
G

and perform a measurement in the computational basis on ψ| ′⟩ to deter-
mine a test action sequence a.

(3) Play one classical epoch by using the test sequence a determined 
in step 2 and obtain the corresponding percept sequence s(a) and the 
reward r(a).

(4) Update ε, and thus the classical policy π, using the rule in equa-
tion (4).

There exists a limit P on ε determining whether it is more advanta-
geous for the agent to perform k Grover iterations with k ε( ) ≥ 1 or 
sample directly from p(a) (therefore k ε( ) = 0) to determine a. In the 
latter case, the agent would interact only classically (as in step 3) with 
the environment.

After each epoch, a classic agent receives a reward with probability 
sin2(ξ). A quantum-enhanced agent can instead use one epoch to either 
perform one Grover iteration (step 2) or to determine the reward of a 
given test sequence a (step 3). After k Grover iterations, the winning prob-
ability is sin2[(2k + 1)ξ] (ref. 28; see next section). Thus, for k = 1, the agent 
receives a reward after every second epoch with probability sin2(3ξ). 
Therefore, we define the expected average reward of an agent playing 
a classical strategy as ηC = sin2(ξ) and of an agent playing a quantum 



strategy with k = 1 as ηQ = sin2(3ξ)/2. For ε < P, ηQ > ηC, meaning that the 
quantum strategy proves advantageous over the classical case. However, 
as soon as ηQ = ηC (at P = 0.396), a classical agent starts outperforming a 
quantum-enhanced agent that still performs Grover iterations.

Determining the winning probability ε exactly as in the example pre-
sented here is not always possible. In general, additional information 
such as the number of possible solutions and model building helps to 
perform this task. Note that a P smaller than 0.396 should be chosen 
if ε can only be estimated up to some range. To circumvent this prob-
lem, methods like Grover search with unknown reward probability31 or 
fixed-point search38 can be used to determine whether and how many 
steps of amplitude amplification should be performed (A.H. et al., 
manuscript in preparation).

Enhancement of the winning probability. After a quantum epoch, 
the amplitude sin(ξ) of the winning state w⟩ increases to sin(3ξ). Here 
we derive this result. The projections onto the winning and losing sub-
spaces are given by Pr = ∑ ⟩⟨w r{ | ( )>0} a aa a  and Pr = ∑ ⟩⟨ℓ r{ | ( )=0} a aa a , re-
spectively, which are orthogonal and sum to identity. Therefore, the 
initial state (12) can be decomposed into a normalized winning 
w ψ⟩ ∝ Pr ⟩w  and losing ℓ ψ⟩ ∝ Pr ⟩ℓ  component, and the unitary (10) im-
plementing one Grover iteration can be written as

U ψ ψ= (2| ⟩⟨ | − )(Pr − Pr ). (16)wG ℓ�

Now, let us investigate the effect of UG on an arbitrary real super-
position

s α w α ℓ⟩ = sin( ) ⟩ + cos( ) ⟩ (17)

in the plane spanned by w⟩ and ℓ⟩. Using the trigonometric addition 
theorems, the application of one Grover iteration to s⟩

U s α ξ w α ξ ℓ⟩ = sin( + 2 ) ⟩ + cos( + 2 ) ⟩ (18)G

can be identified as a rotation of 2ξ in the plane. Assuming α = ξ, we 
therefore find the amplitude of w⟩ to be sin(3ξ), and thus obtain a win-
ning probability sin2(3ξ). Implementing k Grover iterations leads to 
sin2[(2k + 1)ξ].

Learning time. We define the learning time T as the number of epochs 
an agent needs on average to reach a certain winning probability PL. The 
hybrid agent can reach P with fewer epochs on average than its classical 
counterpart. However, once both reach P, they need on average the 
same number of epochs to reach P = ΔP where ΔP is a certain value satisfy-
ing 0 ≤ ΔP < 1 − P. Therefore, we choose PL ≤ P to quantify the achievable 
improvement of a hybrid agent compared with its classical counterpart. 
In our experiment, we choose PL = 0.37 to define the learning time.

Let a a⋯l = { , , }J J1  be a time-ordered list of all the rewarded action 
sequences an agent has found until it reaches PL. Note that the actual 
policy πj, and thus pj, of our agents depend only on the list lj of observed 
rewarded action sequences, and this is independent of whether they 
have found them via classical sampling or quantum amplitude ampli-
fication. As a result, a classical agent and its quantum-enhanced hybrid 
version are described by the same policy π(lj) and behave similarly if 
they have found the same rewarded action sequences. However, the 
hybrid agent finds them faster.

In general, the actual policy and overall winning probability might 
depend on the rewarded action sequences that have been found. Thus, 
the number J of observed rewarded action sequences necessary to learn 
might vary. However, this is not the case for the experiment reported 
here. In our case, the learning time can be determined via

∑T J t( ) = , (19)
j

J

j
=0

−1

where tj determines the number of epochs necessary to find the next 
rewarded sequence aj+1 after it has observed j rewards. For a purely 
classical agent, the average time is given by

t
ε

⟨ ⟩ =
1

. (20)j
jC

This time is quadratically reduced to

t
α
ε

⟨ ⟩ = (21)j
jQ

for the hybrid agent. Here α is a parameter depending only on the 
number of epochs needed to create one oracle query UE

͠  (ref. 2) and 
on whether εj is known. In the case considered here, we find α = π/4. 
As a consequence, the average learning time for the hybrid agent is 
given by

∑T J
α
ε

α J T J⟨ ( )⟩ = ≤ ⟨ ( )⟩ , (22)
j

J

j
Q

=0

−1

C

where we used the Cauchy–Schwarz inequality and equations (19) 
and (20). The classical learning time typically scales with T A⟨ ⟩ ∝ K

C  
for a learning problem with episode length K and the choice between 
A different actions in each step. The number J depends on the specific 
policy update and sometimes also on the list lJ of observed rewarded 
action sequences. For an agent sticking with the first rewarded action 
sequence, we would find J = 1. However, typical learning agents are 
more explorative, and common scalings are J ∝ K such that we  
find

T J T J T J⟨ ( )⟩ ∝ log(⟨ ( )⟩ ) ⟨ ( )⟩ (23)Q C C

for these cases. This is equivalent to a quasi-quadratic speed-up in 
the learning time if arbitrary numbers of Grover iterations can be  
performed.

In more general settings, there exist several possible lJ with different 
length J such that the learning time T J⟨ ( )⟩ needs to be averaged over all 
possible lJ, which again leads to a quadratic speed-up in learning time 
(A.H. et al., manuscript in preparation).

Limited coherent evolutions. In general, all near-term quantum de-
vices allow for coherent evolution only for a limited time and are thus 
limited to a maximal number of Grover iterations. For winning prob-
abilities ε = sin2(ξ) with (2k + 1)ξ ≤ π/2, performing k Grover iterations 
leads to the highest probability of finding a rewarded action.

Again, we assume that the actual policy of an agent depends on only 
the number of observed rewards an agent has found. As a consequence, 
the average time a hybrid agent limited to k Grover iterations needs to 
achieve the winning probability P < sin2[π/(4k + 2)] is given by

∑T J k
α k

k ξ
⟨ ( , )⟩ =

+ 1
sin [(2 + 1) ]

, (24)
j

J

j
Q

=0

−1
0

2

with α0 determining the number of epochs necessary to create one 
oracle query U͠E. For α0 = 1, k ≫ 1 and (2k + 1)ξJ ≪ π/2, we can approximate 
the learning time for the hybrid agent via

∑T J k
kε

T J
k

⟨ ( , )⟩ ≈
1

4
=

⟨ ( )⟩
4

, (25)
j

J

j
Q

=0

−1
C

where we used sin(x) ≈ x for x ≪ 1. In general, it can be shown (A.H. et al.,  
manuscript in preparation) that the winning probability Pk = sin2 
[ π/(4k + 2)] can be reached by a hybrid agent limited to k Grover itera-
tions in a time
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T k γ
T
k

⟨ ( )⟩ ≤
⟨ ⟩

, (26)Q
C

where γ is a factor depending on the specific setting.
In our case, equation (24) can be used to compute the lower bound 

for the average quantum learning time, with α0 = k = 1. For the classical 
strategy, equation (20), together with equation (19), is used. Thus, 
given PL = 0.37, the predictions for the learning time in our experiment 
are T Q

theory = 97 and T C
theory = 293.

Experimental details
A continuous-wave laser (Coherent Mira HP) is used to pump a single- 
photon source producing photon pairs in the telecommunication- 
wavelength band. The laser light has a central wavelength of 789.5 nm 
and pumps the single-photon source at a power of approximately 
100 mW. The source is a periodically poled KTiOPO4 nonlinear crystal 
placed in a Sagnac interferometer39,40, where the emission of single 
photons occurs via a type-II spontaneous parametric down-conversion 
process. The crystal (produced by Raicol) is 30 mm long, set to a tem-
perature of 25 °C, has a poling period of 46.15 μm and is quasi-phase 
matched for degenerate emission of photons at 1,570 nm when pump-
ing with coherent laser light at 785 nm. As the processor is calibrated 
for a wavelength of 1,580 nm, we shift the wavelength of the laser light 
to 789.75 nm to produce one photon at 1,580 nm (that is then coupled 
into the processor) and another one at 1,579 nm (the heralding photon).

The processor is a silicon-on-insulator type, designed by the Quan-
tum Photonics Laboratory at the Massachusetts Institute of Technology 
(MIT)30. Each programmable unit on the device acts as a tunable beam 
splitter implementing the unitary

U

θ θ

θ θ
=

e sin
2

e cos
2

cos
2

−sin
2

, (27)θ ϕ

ϕ ϕ

,

i i















where θ and ϕ are the internal and external phases shown in Fig. 2a, b, 
set via thermo-optical phase shifters controlled by a voltage supply. 
The achievable precision for phase settings is higher than 250 μrad. The 
bandwidth of the phase shifters is around 130 kHz. The waveguides, spa-
tially separated from one another by 25.4 μm, are designed to admit one 
linear polarization only. The high contrast in refractive index between 
the silicon and silica (the insulator) allows for waveguides with very 
small bend radius (less than 15 μm), thus enabling high component 
density (in our case 88 MZIs) on small areas (in our case, 4.9 × 2.4 mm). 
Given the small dimensions, the in-(out-)coupling is realized with the 
help of Si3N4−SiO2 waveguide arrays (produced by Lionix International), 
that shrink (and enlarge) the 10-μm optical fibres’ mode to match the 
2-μm mode size of the waveguides in the processor. The total input–
output loss is around 7 dB. The processor is stabilized to a temperature 
of 28 °C and calibrated at 1,580 nm for optimal performance. To reduce 
the black-body radiation emission due to the heating of the phase shift-
ers when voltage is applied, wavelength division multiplexers with a 
transmission peak centred at 1,571 nm and bandwidth of 13 nm are used 
before the photons are sent to the detectors. In our processor, two 
external phase shifters in the implemented circuits were not responding 
to the supplied voltage. These defects were accounted for by employing 
an optimization procedure.

The single-photon detectors are multi-element superconducting 
nanowires (produced by Photon Spot) with efficiencies up to 90% in 
the telecommunication-wavelength band. They have a dark count rate 
of about 100 counts per second, low timing jitter (hundreds of pico-
seconds) and a reset time <100 ns (ref. 41). Coincidence events are those 
detection events registered in D0 and at the output of the processor 
that fall into a temporal window of 1.3 ns (the coincidence window), 
and are found using a time tagging module (TTM). In more detail, to 

record coincidences and then update the agent’s policy accordingly, 
the following steps are performed in the classical/quantum strategy 
(after initially setting  h h= ∑ ( ) = 1w r{ | ( )>0} aa a   and  aa ah h= ∑ ( ) = 99ℓ r{ | ( )=0}  
such that ε = 0.01).

(1) The TTM records the time tags for photons in D0, D1 and D2/D3.
(2) A Python script converts the time tags into arrival times, and it 

iterates through them until it finds a coincidence event between either 
D0 and D1, or D0 and D2/D3.

(3) If a coincidence event between D0 and D1 (or D0 and D2/D3) is 
first found, a 0 (1) is sent to another Python script controlling the MZIs’ 
phase shifters operating on a different computer. If a 0 is sent, the ratio 
ε h h h= /( + )w ℓ w  remains unchanged. If a 1 is sent, hw is updated as hw + 2, 
which follows the update in equation (4). In the quantum strategy, this 
step also includes the implementation of a classical test epoch.

Implementing classical test epochs on hardware would require 
‘testing’ the measured action state, that is, using the measured action 
sequence as input and making the environment act via UE, thus lead-
ing to detection of a reward 0⟩Ror 1⟩R. However, since this simple 
circuit works in very close agreement with theoretical predictions 
(its visibility exceeds 0.99), this part has been implemented in soft-
ware only.

The update rate is about 1 Hz for both the classical and quantum 
epochs, and can be reduced up to the phase shifters’ bandwidth.
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