Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Function and regulation of the divisome for mitochondrial fission

Abstract

Mitochondria form dynamic networks in the cell that are balanced by the flux of iterative fusion and fission events of the organelles. It is now appreciated that mitochondrial fission also represents an end-point event in a signalling axis that allows cells to sense and respond to external cues. The fission process is orchestrated by membrane-associated adaptors, influenced by organellar and cytoskeletal interactions and ultimately executed by the dynamin-like GTPase DRP1. Here we invoke the framework of the ‘mitochondrial divisome’, which is conceptually and operationally similar to the bacterial cell-division machinery. We review the functional and regulatory aspects of the mitochondrial divisome and, within this framework, parse the core from the accessory machinery. In so doing, we transition from a phenomenological to a mechanistic understanding of the fission process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular and physiological importance of the mitochondrial divisome.
Fig. 2: Evolution of the divisome.
Fig. 3: Structure and organization of DRP1.
Fig. 4: Regulation of the mitochondrial divisome.

Similar content being viewed by others

References

  1. Lewis, M. R. & Lewis. W. H. Mitochondria (and other cytoplasmic structures) in tissue cultures. Am. J. Anat. 17, 339–401 (1915).

    Article  Google Scholar 

  2. Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jornayvaz, F. R. & Shulman, G. I. Regulation of mitochondrial biogenesis. Essays Biochem. 47, 69–84 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Schmitt, K. et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27, 657–666 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Kraus, F. & Ryan, M. T. The constriction and scission machineries involved in mitochondrial fission. J. Cell Sci. 130, 2953–2960 (2017).

    CAS  PubMed  Google Scholar 

  6. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Kuroiwa, T. et al. Structure, function and evolution of the mitochondrial division apparatus. Biochim. Biophys. Acta 1763, 510–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Rowlett, V. W. & Margolin, W. The bacterial divisome: ready for its close-up. Phil. Trans. R. Soc. Lond. B 370, 20150028 (2015).

    Article  Google Scholar 

  11. Haeusser, D. P. & Margolin, W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat. Rev. Microbiol. 14, 305–319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Osteryoung, K. W. & Nunnari, J. The division of endosymbiotic organelles. Science 302, 1698–1704 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Nishida, K. et al. Triple immunofluorescent labeling of FtsZ, dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J. Histochem. Cytochem. 52, 843–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239 (2018). This study demonstrates that DRP1 can sever membrane tubules and is independent of endocytic dynamins in mitochondrial fission.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenbloom, A. B. et al. Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant. Proc. Natl Acad. Sci. USA 111, 13093–13098 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kalia, R. et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558, 401–405 (2018). Structural insights from a complex of DRP1 with its adaptor suggest a mechanism for adaptor disengagement from DRP1 upon GTP hydrolysis.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reubold, T. F. et al. Crystal structure of the dynamin tetramer. Nature 525, 404–408 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ford, M. G., Jenni, S. & Nunnari, J. The crystal structure of dynamin. Nature 477, 561–566 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature 477, 556–560 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Bohuszewicz, O. & Low, H. H. Structure of a mitochondrial fission dynamin in the closed conformation. Nat. Struct. Mol. Biol. 25, 722–731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kong, L. et al. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560, 258–262 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, S. et al. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 35, 514–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Adachi, Y. et al. Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol. Cell 63, 1034–1043 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bustillo-Zabalbeitia, I. et al. Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS ONE 9, e102738 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Francy, C. A., Clinton, R. W., Fröhlich, C., Murphy, C. & Mears, J. A. Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer. Sci. Rep. 7, 10744 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Stepanyants, N. et al. Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol. Biol. Cell 26, 3104–3116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strack, S. & Cribbs, J. T. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J. Biol. Chem. 287, 10990–11001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clinton, R. W., Francy, C. A., Ramachandran, R., Qi, X. & Mears, J. A. Dynamin-related protein 1 oligomerization in solution impairs functional interactions with membrane-anchored mitochondrial fission factor. J. Biol. Chem. 291, 478–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Lu, B. et al. Steric interference from intrinsically disordered regions controls dynamin-related protein 1 self-assembly during mitochondrial fission. Sci. Rep. 8, 10879 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Koirala, S. et al. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc. Natl Acad. Sci. USA 110, E1342–E1351 (2013). A systematic analysis of the independent contribution of adaptors to mitochondrial division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lackner, L. L., Horner, J. S. & Nunnari, J. Mechanistic analysis of a dynamin effector. Science 325, 874–877 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Osellame, L. D. et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158 (2010). This paper establishes that MFF recruits DRP1 for fission, whereas FIS1 is dispensable.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arimura, S. I. Fission and fusion of plant mitochondria, and genome maintenance. Plant Physiol. 176, 152–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Melatti, C. et al. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog. 15, e1007512 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xian, H., Yang, Q., Xiao, L., Shen, H. M. & Liou, Y. C. STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nat. Commun. 10, 2059 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Shen, Q. et al. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 25, 145–159 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Costello, J. L. et al. Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J. Cell Sci. 130, 1675–1687 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gandre-Babbe, S. & van der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412 (2008). The discovery of MFF is reported, and the fact that loss of MFF phenocopies loss of DRP1 is demonstrated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212, 531–544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Losón, O. C. et al. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22, 367–377 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Losón, O. C. et al. Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci. 24, 386–394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Losón, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659–667 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Palmer, C. S. et al. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565–573 (2011). This study reports the discovery of MiD proteins as adaptors for DRP1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richter, V. et al. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204, 477–486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma, J. et al. New interfaces on MiD51 for Drp1 recruitment and regulation. PLoS ONE 14, e0211459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, R. & Chan, D. C. The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol. Biol. Cell 26, 4466–4477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Z., Liu, L., Wu, S. & Xing, D. Drp1, Mff, Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis. FASEB J. 30, 466–476 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Palmer, C. S. et al. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 288, 27584–27593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A. & Ryan, M. T. Analysis of ER–mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. J. Cell Sci. 128, 2795–2804 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011). The authors report the role of the ER in inducing mitochondrial constriction sites for fission.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Helle, S. C. J. et al. Mechanical force induces mitochondrial fission. eLife 6, e30292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Itoh, K. et al. A brain-enriched Drp1 isoform associates with lysosomes, late endosomes, and the plasma membrane. J. Biol. Chem. 293, 11809–11822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ford, M. G. J. & Chappie, J. S. The structural biology of the dynamin-related proteins: new insights into a diverse, multitalented family. Traffic 20, 717–740 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Macdonald, P. J. et al. Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J. Biol. Chem. 291, 493–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. NY Acad. Sci. 1201, 34–39 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Otera, H., Ishihara, N. & Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta 1833, 1256–1268 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Cribbs, J. T. & Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939–944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803–15808 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, B. et al. Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics. Nat. Commun. 11, 2549 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cherok, E. et al. Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5-dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics. Mol. Biol. Cell 28, 396–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, S. et al. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27, 349–359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016). A kinase-controlled signalling axis that links metabolism to mitochondrial division is delineated.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Brito, O. M. & Scorrano, L. An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship. EMBO J. 29, 2715–2723 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Giacomello, M. & Pellegrini, L. The coming of age of the mitochondria–ER contact: a matter of thickness. Cell Death Differ. 23, 1417–1427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta 1841, 595–609 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Li, S. et al. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J. Cell Biol. 208, 109–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks. Nat. Commun. 7, 12886 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Manor, U. et al. A mitochondria-anchored isoform of the actin–nucleating spire protein regulates mitochondrial division. eLife 4, (2015).

  76. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013). This study links actin dynamics, the ER and IFN2 to mitochondrial division.

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Chakrabarti, R. et al. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217, 251–268 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, C. & Svitkina, T. M. Ultrastructure and dynamics of the actin–myosin II cytoskeleton during mitochondrial fission. Nat. Cell Biol. 21, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Korobova, F., Gauvin, T. J. & Higgs, H. N. A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24, 409–414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hatch, A. L., Ji, W. K., Merrill, R. A., Strack, S. & Higgs, H. N. Actin filaments as dynamic reservoirs for Drp1 recruitment. Mol. Biol. Cell 27, 3109–3121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018). Lysosome–mitochondria contacts are shown to influence mitochondrial division.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nagashima, S. et al. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367, 1366–1371 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Ackema, K. B. et al. The small GTPase Arf1 modulates mitochondrial morphology and function. EMBO J. 33, 2659–2675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER–mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016). These results provide insights into the coordination between mitochondrial DNA replication and division.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 9, 12419 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  86. Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Anand, R. et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204, 919–929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Faelber, K. et al. Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature 571, 429–433 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, D. et al. Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding. eLife 9, e50294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cho, B. et al. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat. Commun. 8, 15754 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Fox, C. A., Ellison, P., Ikon, N. & Ryan, R. O. Calcium-induced transformation of cardiolipin nanodisks. Biochim. Biophys. Acta Biomembr. 1861, 1030–1036 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Basu, K. et al. Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. PLoS ONE 12, e0179397 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465, 435–440 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dar, S., Kamerkar, S. C. & Pucadyil, T. J. A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function. Nat. Cell Biol. 17, 1588–1596 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Dar, S., Kamerkar, S. C. & Pucadyil, T. J. Use of the supported membrane tube assay system for real-time analysis of membrane fission reactions. Nat. Protoc. 12, 390–400 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Purkanti, R. & Thattai, M. Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc. Natl Acad. Sci. USA 112, 2800–2805 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540, 139–143 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fonseca, T. B., Sánchez-Guerrero, Á., Milosevic, I. & Raimundo, N. Mitochondrial fission requires DRP1 but not dynamins. Nature 570, E34–E42 (2019). DRP1, and not the endocytic dynamins, is shown to be necessary for mitochondrial fission.

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Favaro, G. et al. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat. Commun. 10, 2576 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  104. Hennings, T. G. et al. In vivo deletion of β-cell Drp1 impairs insulin secretion without affecting islet oxygen consumption. Endocrinology 159, 3245–3256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Simula, L. et al. Drp1 controls effective T cell immune-surveillance by regulating T cell migration, proliferation, and cMyc-dependent metabolic reprogramming. Cell Rep. 25, 3059–3073 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sesaki, H., Southard, S. M., Yaffe, M. P. & Jensen, R. E. Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342–2356 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, L. & Knowlton, A. A. Mitochondrial dynamics in heart failure. Congest. Heart Fail. 17, 257–261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yamada, T. et al. Mitochondrial stasis reveals p62-mediated ubiquitination in Parkin-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metab. 28, 588–604 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Verrigni, D. et al. Clinical-genetic features and peculiar muscle histopathology in infantile DNM1L-related mitochondrial epileptic encephalopathy. Hum. Mutat. 40, 601–618 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child Neurol. 54, 397–406 (2012).

    Article  PubMed  Google Scholar 

  112. Koch, J. et al. Disturbed mitochondrial and peroxisomal dynamics due to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy. J. Med. Genet. 53, 270–278 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Bartsakoulia, M. et al. A novel mechanism causing imbalance of mitochondrial fusion and fission in human myopathies. Hum. Mol. Genet. 27, 1186–1195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008). Detailed microscopic observations reveal the importance of fission as a surveillance measure for mitochondrial quality control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 219, e201911122 (2020). A role for the ER in regulating both mitochondrial fission and fusion machineries is established.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nguyen, T. N., Padman, B. S. & Lazarou, M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 26, 733–744 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Gomes, L. C. & Scorrano, L. Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta 1833, 205–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Lieber, T., Jeedigunta, S. P., Palozzi, J. M., Lehmann, R. & Hurd, T. R. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570, 380–384 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rana, A. et al. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat. Commun. 8, 448 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  121. Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017). This study supports the role of DRP1 and division in segregating mitochondrial fragments away from the larger population for selective, rather than bulk, turnover.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bernard, G. et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838–848 (2007).

    Article  Google Scholar 

  123. Pfluger, P. T. et al. Calcineurin links mitochondrial elongation with energy metabolism. Cell Metab. 22, 838–850 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, Y. M. et al. Redox regulation of mitochondrial fission protein Drp1 by protein disulfide isomerase limits endothelial senescence. Cell Rep. 23, 3565–3578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, Z. et al. Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat. Commun. 10, 104 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  126. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Morita, M. et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922–935 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, L. et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia 58, 2371–2380 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Prieto, J. et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun. 7, 11124 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Serasinghe, M. N. et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57, 521–536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kashatus, J. A. et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57, 537–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nagdas, S. et al. Drp1 promotes KRas-driven metabolic changes to drive pancreatic tumor growth. Cell Rep. 28, 1845–1859 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xie, Q. et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat. Neurosci. 18, 501–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sheng, Z. H. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 27, 403–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Csordás, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121–132 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. MacAskill, A. F. & Kittler, J. T. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102–112 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Chang, D. T., Honick, A. S. & Reynolds, I. J. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci. 26, 7035–7045 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kang, J. S. et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137–148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lewis, T. L. Jr, Kwon, S. K., Lee, A., Shaw, R. & Polleux, F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat. Commun. 9, 5008 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  142. Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Shields, L. Y. et al. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis. 6, e1725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Horn, A., Raavicharla, S., Shah, S., Cox, D. & Jaiswal, J. K. Mitochondrial fragmentation enables localized signaling required for cell repair. J. Cell Biol. 219, e201909154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  Google Scholar 

  148. Prudent, J. et al. MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol. Cell 59, 941–955 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Nishimura, A. et al. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci. Signal. 11, eaat5185 (2018).

    Article  PubMed  Google Scholar 

  150. Ong, S. B. et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121, 2012–2022 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Sabouny, R. & Shutt, T. E. Reciprocal regulation of mitochondrial fission and fusion. Trends Biochem. Sci. 45, 564–577 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Samangouei, P. et al. MiD49 and MiD51: new mediators of mitochondrial fission and novel targets for cardioprotection. Cond. Med. 1, 239–246 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Zhou, H. et al. Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J. Am. Heart Assoc. 6, e005328 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Civenni, G. et al. Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer. Cell Metab. 30, 303–318 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Udagawa, O. & Ishihara, N. Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes. J. Biochem. 167, 257–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Tian, L. et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J. Mol. Med. (Berl.) 95, 381–393 (2017).

    Article  CAS  Google Scholar 

  157. Humphries, B. A. et al. Enhanced mitochondrial fission suppresses signaling and metastasis in triple-negative breast cancer. Breast Cancer Res. 22, 60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Pucadyil and Ryan laboratories for comments on the manuscript. K.R. thanks the Council for Scientific and Industrial Research for a graduate fellowship. Work in the Pucadyil laboratory is supported by funds from the Department of Science and Technology‐SERB and the Howard Hughes Medical Institute (HHMI). T.J.P. is an International Scholar of the HHMI. M.T.R. acknowledges support from the Australian Research Council and the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

T.J.P. and M.T.R. conceptualized the manuscript. F.K., K.R., T.J.P. and M.T.R. wrote the manuscript.

Corresponding authors

Correspondence to Thomas J. Pucadyil or Michael T. Ryan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Laura Lynn Lackner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, F., Roy, K., Pucadyil, T.J. et al. Function and regulation of the divisome for mitochondrial fission. Nature 590, 57–66 (2021). https://doi.org/10.1038/s41586-021-03214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03214-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing