Abstract
A large scholarship currently holds that before the onset of anthropogenic global warming, natural climatic changes long provoked subsistence crises and, occasionally, civilizational collapses among human societies. This scholarship, which we term the ‘history of climate and society’ (HCS), is pursued by researchers from a wide range of disciplines, including archaeologists, economists, geneticists, geographers, historians, linguists and palaeoclimatologists. We argue that, despite the wide interest in HCS, the field suffers from numerous biases, and often does not account for the local effects and spatiotemporal heterogeneity of past climate changes or the challenges of interpreting historical sources. Here we propose an interdisciplinary framework for uncovering climate–society interactions that emphasizes the mechanics by which climate change has influenced human history, and the uncertainties inherent in discerning that influence across different spatiotemporal scales. Although we acknowledge that climate change has sometimes had destructive effects on past societies, the application of our framework to numerous case studies uncovers five pathways by which populations survived—and often thrived—in the face of climatic pressures.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lieberman, B. & Gordon, E. Climate Change in Human History: Prehistory to the Present (Bloomsbury, 2018).
White, S., Pfister, C. & Mauelshagen, F. (eds) The Palgrave Handbook of Climate History (Palgrave Macmillan, 2018). This edited volume provides a state-of-the-art survey of scholarship in palaeoclimatology, historical climatology and climate history, a field that partly overlaps with HCS.
Ladurie, E. L. R. Abrégé d’Histoire du Climat: du Moyen Âge à Nos Jours (Fayard, 2007).
Brooke, J. Climate Change and the Course of Global History: A Rough Journey (Cambridge, 2015).
Linden, E. The Winds of Change: Climate, Weather, and the Destruction of Civilizations (Simon and Schuster, 2006).
Behringer, W. A Cultural History of Climate (Polity, 2010).
White, S. The Climate of Rebellion in the Early Modern Ottoman Empire (Cambridge Univ. Press, 2011).
Parker, G. Global Crisis: War, Climate Change and Catastrophe in the Seventeenth Century (Yale Univ. Press, 2013). This is perhaps the most influential and ambitious qualitative study in HCS that links the LIA to harvest failures, famines, epidemics, and violence within and between societies.
Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 ad. Nat. Geosci. 9, 231–236 (2016). This article by a consilient team coined the term ‘Late Antique Little Ice Age’, and links its purported cooling to crises endured by societies in the sixth century ad.
Camenisch, C. et al. The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe. Clim. Past 12, 2107–2126 (2016).
Campbell, B. The Great Transition: Climate, Disease, and Society in the Late-Medieval World (Cambridge Univ. Press, 2016). This book is one of the most sophisticated attempts to identify disastrous effects of the LIA on European societies, but uses a reconstruction of the North Atlantic Oscillation that has now been fundamentally updated.
White, S. A Cold Welcome: The Little Ice Age and Europe’s Encounter with North America (Harvard Univ.y Press, 2017).
Skopyk, B. Colonial Cataclysms: Climate, Landscape, and Memory in Mexico’s Little Ice Age (Univ. of Arizona Press, 2020).
Weiss, H. et al. The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004 (1993). This seminal article introduces a particularly convincing example of a city and civilization that allegedly collapsed amid a decades-long drought.
Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).
Gill, R. B. The Great Maya Droughts: Water, Life, and Death (Univ. of New Mexico Press, 2000).
Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).
Diamond, J. Collapse: How Societies Choose to Fail or Succeed, revised edn (Oxford Univ. Press, 2011). This influential book introduced a popular audience to the concept that societies collapsed when faced with pre-industrial climate changes, including those of the LIA.
McAnany, P. A. & Yoffee, N. (eds) Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire (Cambridge Univ. Press, 2010).
Li, Z. et al. Drought promoted the disappearance of civilizations along the ancient silk road. Environ. Earth Sci. 75, 1116 (2016).
Weiss, H. (ed.) Megadrought and Collapse: From Early Agriculture to Angkor (Oxford Univ. Press, 2017).
Holm, P. & Winiwarter, V. Climate change studies and the human sciences. Global Planet. Change 156, 115–122 (2017).
Hambrecht, G. et al. Archaeological sites as distributed long-term observing networks of the past (DONOP). Quat. Int. 549, 218–226 (2020).
Ljungqvist, F. C., Seim, A. & Huhtamaa, H. Climate and society in European history. Wiley Interdiscip. Rev. Clim. Change, https://doi.org/10.1002/wcc.691 (2020). This study surveys 165 studies in European HCS and helped us to build the database that we used to create Fig. 2.
White, S. The real Little Ice Age. J. Interdiscip. Hist. 44, 327–352 (2013).
Brückner, E. Der Einfluß der Klimaschwankungen auf die Ernteerträge und Getreidepreise in Europa. Geogr. Z. 1, 39–51, 100–108 (1895).
Beveridge, W. H. Weather and harvest cycles. Econ. J. (Lond.) 31, 429–452 (1921).
Beveridge, W. H. Wheat prices and rainfall in western Europe. J. R. Stat. Soc. 85, 412–475 (1922).
Douglass, A. E. A method of estimating rainfall by the growth of trees. Bull. Am. Geogr. Soc. 46, 321–335 (1914).
Huntington, E. Changes of climate and history. Am. Hist. Rev. 18, 213–232 (1913).
Huntington, E. Civilization and Climate (Yale Univ. Press, 1917).
Huntington, E. Climatic change and agricultural exhaustion as elements in the fall of Rome. Q. J. Econ. 31, 173–208 (1917).
Martin, G. Ellsworth Huntington: His Life and Thought (Archon, 1973).
Le Roy Ladurie, E. Histoire du Climat Depuis l’An Mil (Flammarion, 1967).
Pfister, C. Climate and economy in eighteenth-century Switzerland. J. Interdiscip. Hist. 9, 223–243 (1978).
de Vries, J. Measuring the impact of climate on history: the search for appropriate methodologies. J. Interdiscip. Hist. 10, 599–630 (1980).
Carey, M. Climate and history: a critical review of historical climatology and climate change historiography. Wiley Interdiscip. Rev. Clim. Change 3, 233–249 (2012).
Izdebski, A., Mordechai, L. & White, S. The social burden of resilience: a historical perspective. Hum. Ecol. Interdiscip. J. 46, 291–303 (2018).
Hegmon, M. et al. Social transformation and its human costs in the prehispanic U.S. southwest. Am. Anthropol. 110, 313–324 (2008).
Middleton, G. D. Nothing lasts forever: environmental discourses on the collapse of past societies. J. Archaeol. Res. 20, 257–307 (2012).
Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).
Béné, C. et al. Is resilience socially constructed? Empirical evidence from Fiji, Ghana, Sri Lanka, and Vietnam. Glob. Environ. Change 38, 153–170 (2016).
Middleton, G. D. The show must go on: collapse, resilience, and transformation in 21st-century archaeology. Rev. Anthropol. 46, 78–105 (2017).
Feng, Q. et al. Domino effect of climate change over two millennia in ancient China’s Hexi corridor. Nature Sustainability 2, 957–961 (2019).
Whittow, M. in (Theory and Practice in Late Antique Archaeology (eds Lavan, L. & Bowden, W.) 404–23 (Brill, 2003).
Wickman, T. in The Palgrave Handbook of Climate History (eds White, S. et al.) 387–411 (Palgrave Macmillan, 2018).
PAGES Hydro2k Consortium. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Clim. Past 13, 1851–1900 (2017).
Esper, J. et al. Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 50, 81–90 (2018).
Franke, J. G. & R. V. Donner. Correlating paleoclimate time series: sources of uncertainty and potential pitfalls. Quat. Sci. Rev. 212, 69–79 (2019).
Comboul, M. et al. A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives. Clim. Past 10, 825–841 (2014).
Crowley, T. J. Correlating high‐frequency climate variations. Paleoceanography 14, 271–272 (1999).
Wang, J. et al. Fragility of reconstructed temperature patterns over the Common Era: implications for model evaluation. Geophys. Res. Lett. 42, 7162–7170 (2015).
Newfield, T. in The Palgrave Handbook of Climate History (eds White, S. et al.) 447–493 (Palgrave Macmillan, 2018). This article provides the most thorough and interdisciplinary overview currently available of the cluster of volcanic eruptions that initiated the LALIA.
Gerring, J. Social Science Methodology: A Unified Framework (Cambridge Univ. Press, 2012).
Harper, K. & McCormick, M. in The Science of Roman History: Biology, Climate, and the Future of the Past (ed. Scheidel, W.) 11–52 (Princeton Univ. Press, 2018).
Blom, P. Nature’s Mutiny: How the Little Ice Age of the Long Seventeenth Century Transformed the West and Shaped the Present (Liveright, 2019).
Harper, K. The Fate of Rome: Climate, Disease, and the End of an Empire (Yale Univ. Press, 2017).
Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).
Stoffel, M. et al. Estimates of volcanic-induced cooling in the northern hemisphere over the past 1,500 years. Nat. Geosci. 8, 784–788 (2015).
Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change) (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013).
PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017). The PAGES2k consortium provides some of the most important data on climate change over the past 2,000 years.
Tardif, R. et al. Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Clim. Past 15, 1251–1273 (2019).
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019). This important article emphasizes the spatiotemporal heterogeneity of climate changes in the past 2,000 years (and prior to anthropogenic global warming).
Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).
Helama, S., Jones, P. D. & Briffa, K. R. Limited Late Antique cooling. Nat. Geosci. 10, 242–243 (2017).
Mangini, A., Spötl, C. & Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet. Sci. Lett. 235, 741–751 (2005).
Helama, S., Jones, P. D. & Briffa, K. R. Dark Ages cold period: a literature review and directions for future research. Holocene 27, 1600–1606 (2017).
Riechelmann, D. & Gouw-Bouman, M. T. I. J. Climate during the first millennium ad in NW Europe: a review of climate reconstructions from terrestrial archives. Quat. Res. 91, 111–131 (2019).
Labuhn, I. et al. in Environment and Society in the Long Late Antiquity (eds In Izdebski, A. & Mulryan, M.) 65–88 (Brill, 2018).
Matthews, J. A. & Briffa, K. R. The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr. Ann., Ser. A 87, 17–36 (2005).
Cook, B. I. & Wolkovich, E. M. Climate change decouples drought from early wine grape harvests in France. Nat. Clim. Chang. 6, 715–719 (2016).
De Dreu, C. K. & van Dijk, M. A. Climatic shocks associate with innovation in science and technology. PLoS ONE, 13, e0190122 (2018).
Lee, H. F. et al. Demographic impact of climate change on northwestern China in the late imperial era. Quat. Int. 425, 237–247 (2016).
Peregrine, P. N. Social resilience to climate change during the Late Antique Little Ice Age: a replication study. Weather Clim. Soc. 12, 561–573 (2020).
Zhang, D. D., Brecke, P., Lee, H. F., He, Y. Q. & Zhang, J. Global climate change, war, and population decline in recent human history. Proc. Natl Acad. Sci. USA 104, 19214–19219 (2007). An early and influential study by D. Zhang, a pioneer in the statistical approach to HCS, that links war (the social event most often considered by statistical HCS scholars) to pre-industrial climate changes.
Tol, R. S. J. & Wagner, S. Climate change and violent conflict in Europe over the last millennium. Clim. Change 99, 65–79 (2010).
Zhang, Z. et al. Periodic climate cooling enhanced natural disasters and wars in China during ad 10–1900. Proc. Royal Soc. B 277, 3745–3753 (2010).
Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).
Lee, H. F., Zhang, D. D., Brecke, P. & Pei, Q. Climate change, population pressure, and wars in European history. Asian Geogr. 36, 29–45 (2019).
Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).
Lee, H. F. & Yue, R. P. Ocean/atmosphere interaction and Malthusian catastrophes on the northern fringe of the Asian summer monsoon region in China, 1368–1911. J. Quat. Sci. 35, 974–986 (2020).
Pei, Q., Zhang, D. D., Fei, J. & Hui, P. Y. Demographic crises of different climate phases in preindustrial northern hemisphere. Hum. Ecol. 48, 519–527 (2020).
Zhang, D. D. et al. The causality analysis of climate change and large-scale human crisis. Proc. Natl Acad. Sci. USA 108, 17296–17301 (2011).
Zhang, D. & Lee, H. Climate change, food shortage and war: a quantitative case study in China during 1500–1800. Catrina Int. J. Environ. Sci. 5, 63–71 (2010).
Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A. & Lobell, D. B. Warming increases the risk of civil war in Africa. Proc. Natl Acad. Sci. USA 106, 20670–20674 (2009). This influential study provides one of the clearest examples of statistical scholarship in HCS being used to model and predict the future effects of anthropogenic global warming on society.
Peregrine, P. N. Climate and social change at the start of the Late Antique Little Ice Age. Holocene 30, 1643–1648 (2020).
Zhang, D. D., Zhang, J., Lee, H. F. & He, Y. Q. Climate change and war frequency in eastern China over the last millennium. Hum. Ecol. 35, 403–414 (2007).
van Bavel, B. J. P. et al. Climate and society in long-term perspective: opportunities and pitfalls in the use of historical datasets. Wiley Interdiscip. Rev. Clim. Change 10, e611 (2019).
Degroot, D. in The Palgrave Handbook of Climate History (eds. White, S. et al.) 367–385 (Palgrave Macmillan, 2018).
O’Mahony, S. Medicine and the McNamara fallacy. J. R. Coll. Physicians Edinb. 47, 281–287 (2017).
Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322, 940–942 (2008).
Adams, C., Ide, T., Barnett, J. & Detges, A. Sampling bias in climate–conflict research. Nat. Clim. Chang. 8, 200–203 (2018).
Kelly, M. & Ó Gráda, C. The waning of the Little Ice Age: climate change in early modern Europe. J. Interdiscip. Hist. 44, 301–325 (2013).
Degroot, D. Climate change and society from the fifteenth through the eighteenth centuries. Wiley Interdiscip. Rev. Clim. Change 9, e518 (2018). This article provides an overview of how scholars have thought about the effects of the LIA on society, and suggests that resilience has been understudied in this scholarship.
Haldon, J. et al. History meets palaeoscience: consilience and collaboration in studying past societal responses to environmental change. Proc. Natl Acad. Sci. USA 115, 3210–3218 (2018). This article was among the first to call for a consilient approach in HCS, which it links to studies that consider small spatiotemporal scales and thereby provide more convincing accounts of causation.
Erdkamp, P. War, food, climate change, and the decline of the Roman empire. J. Late Antiq. 12, 422–465 (2019).
White, S. & Degroot, D. Climate History Network Zotero Bibliographical Project. Climate History Network, www.climatehistory.net/bibliography (accessed 28 October 2020).
Fei, J., Zhou, J. & Hou, Y. Circa ad 626 volcanic eruption, climatic cooling, and the collapse of the eastern Turkic empire. Clim. Change 81, 469–475 (2007).
Warde, P. Global crisis or global coincidence? Past Present 228, 287–301 (2015).
Drake, B. L. Changes in North Atlantic Oscillation drove population migrations and the collapse of the western Roman empire. Sci. Rep. 7, 1227 (2017).
Contreras, D. A. in The Archaeology of Human–Eenvironment Interactions (ed. Contreras, D. A.) 17–36 (Routledge, 2016).
Baillie, M. G. Suck-in and smear: two related chronological problems for the 90s. Journal of Theoretical Archaeology 2, 12–16 (1991).
Degroot, D. The Frigid Golden Age: Climate Change, the Little Ice Age, and the Dutch Republic, 1560–1720 (Cambridge Univ. Press, 2018). This book is the first devoted to the resilience of a society during the LIA, and provides a brief overview of some of the challenges in HCS that we explain in greater and more interdisciplinary detail in this Review.
Camenisch, C. & Rohr, C. When the weather turned bad: the research of climate impacts on society and economy during the Little Ice Age in Europe, an overview. CIG 44, 99–114 (2018).
Izdebski, A. et al. Realising consilience: how better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quat. Sci. Rev. 136, 5–22 (2016).
Newfield, T. P. & Labuhn, I. Realizing consilience in studies of pre-instrumental climate and pre-laboratory disease. J. Interdiscip. Hist. 48, 211–240 (2017).
McCormick, M. History’s changing climate: climate science, genomics, and the emerging consilient approach to interdisciplinary history. J. Interdiscip. Hist. 42, 251–273 (2011).
Riede, F. et al. Prospects and pitfalls in integrating volcanology and archaeology: a review. J. Volcanol. Geotherm. Res. 401, 106977 (2020).
Heymann, M., Gramelsberger, G. & Mahony, M. (eds) Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-based Modelling and Simulation (Taylor & Francis, 2017).
Degroot, D. Testing the limits of climate history: the quest for a northeast passage during the Little Ice Age, 1594–1597. J. Interdiscip. Hist. 45, 459–484 (2015).
Xoplaki, E. et al. The Medieval Climate Anomaly and Byzantium: a review of the evidence on climatic fluctuations, economic performance and societal change. Quat. Sci. Rev. 136, 229–252 (2016).
Butzer, K. W. Collapse, environment, and society. Proc. Natl Acad. Sci. USA 109, 3632–3639 (2012).
Butzer, K. W. & Endfield, G. H. Critical perspectives on historical collapse. Proc. Natl Acad. Sci. USA 109, 3628–3631 (2012).
Caseldine, C. J. & Turney, C. The bigger picture: towards integrating palaeoclimate and environmental data with a history of societal change. J. Quaternary Sci. 25, 88–93 (2010).
Xoplaki, E. et al. Modelling climate and societal resilience in the eastern Mediterranean in the last millennium. Hum. Ecol. 46, 363–379 (2018). This HCS study provides a model for integrating perspectives from many disciplines, identifying climate effects on limited spatiotemporal scales, understanding resilience and navigating uncertainty.
Endfield, G. H. Climate and Society in Colonial Mexico: A Study in Vulnerability (John Wiley, 2011).
Wickman, T. Snowshoe Country: An Environmental and Cultural History of Winter in the Early American Northeast (Cambridge Univ. Press, 2018).
de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).
Ebert, C. E. et al. The role of diet in resilience and vulnerability to climate change among early agricultural communities in the Maya lowlands. Curr. Anthropol. 60, 589–601 (2019).
Åkesson, C. M. et al. 2,100 years of human adaptation to climate change in the High Andes. Nat. Ecol. Evol. 4, 66–74 (2020).
Bradtmöller, M., Grimm, S. & Riel-Salvatore, J. Resilience theory in archaeological practice–an annotated review. Quat. Int. 446, 3–16 (2017). This article explains how archaeologists have used and challenged resilience theory and its concept of adaptive cycles.
Nicoll, K. & Zerboni, A. Is the past key to the present? Observations of cultural continuity and resilience reconstructed from geoarchaeological records. Quat. Int. 545, 119–127 (2020).
Soens, T. in Strategies, Dispositions and Resources of Social Resilience (eds Endress, M. et al.) 253–274 (Springer, 2020). This study surveys some criticisms of the concept of resilience, and provides a road map for using the term in historical disaster studies that has obvious relevance for HCS.
Endfield, G. H. Exploring particularity: vulnerability, resilience, and memory in climate change discourses. Environ. Hist. 19, 303–310 (2014).
Van Bavel, B. et al. Disasters and History: The Vulnerability and Resilience of Past Societies (Cambridge Univ. Press, 2020).
Matthews, J. B. R. (ed.) in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Annex I: Glossary (IPCC, 2018). This IPCC report on the consequences of 1.5 °C of warming, relative to the pre-industrial average, includes the definitions for ‘resilience’ and ‘adaptation’ that we use in this article.
Haldon, J. & Rosen, A. Society and environment in the east Mediterranean ca 300–1800 ce, problems of resilience, adaptation and transformation: introductory essay. Hum. Ecol. 46, 275–290 (2018).
Soens, T. Resilient societies, vulnerable people: coping with North Sea floods before 1800. Past Present 241, 143–177 (2018).
Holling, C. S. in Sustainable Development of the Biosphere (eds Clarke, W. C. & Munn, R. E.) 292–317 (Cambridge Univ. Press, 1986).
Pederson, N., Hessl, A. E., Baatarbileg, N., Anchukaitis, K. J. & Di Cosmo, N. Pluvials, droughts, the Mongol empire, and modern Mongolia. Proc. Natl Acad. Sci. USA 111, 4375–4379 (2014).
Bintliff, J. in The Transition to Late Antiquity: On the Danube and Beyond (ed. Poulter, A. G.) 649–78 (British Academy, 2007).
Decker, M. Tilling the Hateful Earth: Agricultural Production and Trade in the Late Antique East (Oxford Univ. Press, 2009).
Izdebski, A. A rural economy in transition: Asia Minor from Late Antiquity into the Early Middle Ages. J. Juristic Papyrol. (Supplement Series), 18 (2013).
Izdebski, A., Koloch, G. & Słoczyński, T. Exploring Byzantine and Ottoman economic history with the use of palynological data: a quantitative approach. Jahrbuch Der Österreichischen Byzantinistik 65, 67–110 (2015).
Izdebski, A., Pickett, J., Roberts, N. & Waliszewski, T. The environmental, archaeological and historical evidence for regional climatic changes and their societal impacts in the eastern Mediterranean in Late Antiquity. Quat. Sci. Rev. 136, 189–208 (2016).
Banaji, J. Exploring the Economy of Late Antiquity: Selected Essays (Cambridge Univ. Press, 2016).
Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).
Degroot, D. ‘Never such weather known in these seas’: climatic fluctuations and the Anglo-Dutch wars of the seventeenth century, 1652–1674. Environ. Hist. 20, 239–273 (2014).
Degroot, D. War of the whales: climate change, weather and arctic conflict in the early seventeenth century. Environ. Hist. 26, 549–577 (2020).
Hacquebord, L. The hunting of the Greenland right whale in Svalbard, its interaction with climate and its impact on the marine ecosystem. Polar Res. 18, 375–382 (1999).
Gerrard, C. M. & Petley, D. N. A risk society? Environmental hazards, risk and resilience in the later Middle Ages in Europe. Nat. Hazards 69, 1051–1079 (2013).
TeBrake, W. Ecology and economy in Early Medieval Frisia. Viator 9, 1–30 (1978).
Lebecq, S. Marchands et Navigateurs Frisons du Haut Moyen âge I: Essai (Presses Univ. de Lille, 1983).
Verhulst, A. The Carolingian Economy (Cambridge Univ. Press, 2002).
Devroey, J. P. Économie Rurale et Société dans l’Europe Franque (VIe-IXe siècles) (Belin, 2003).
Bazelmans, J. De Late Prehistorie en Protohistorie van Holoceen Noord-Nederland (Waddenacademie KNAW, 2009).
Vos, P. Origin of the Dutch Coastal Landscape: Long-Term Landscape Evolution of the Netherlands during the Holocene (Barkhuis, 2015).
Knol, E. & Ijssennagger, N. in Frisians and their North Sea Neighbours: From the Fifth Century to the Viking Age (eds Hines, J. & IJssennagger, N.) 5–24 (Boydell, 2017).
Gräslund, B. & Price, N. Twilight of the gods? The ‘dust veil event’ of ad 536 in critical perspective. Antiquity 86, 428–443 (2012).
Tvauri, A. The impact of the climate catastrophe of 536–537 ad in Estonia and neighbouring areas. Eesti Arheoloogia Ajakiri 18, 30–56 (2014).
Oinonen, M. et al. Buried in water, burdened by nature–resilience carried the Iron Age people through Fimbulvinter. PLoS ONE 15, e0231787 (2020).
Dijkman, J. in Famines During the ’Little Ice Ageʼ (1300–1800) (eds Collet, D. & Schuh, M.) 171–193 (Springer, 2018).
Unger, R. W. Energy sources for the Dutch golden age: peat, wind, and coal. Res. Econ. Hist. 9, 221–253 (1984).
Curtis, D. R. & Dijkman, J. The escape from famine in the northern Netherlands: a reconsideration using the 1690s harvest failures and a broader northwest European perspective. Seventeenth Century 34, 229–258 (2019).
Huhtamaa, H. & Helama, S. Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland. J. Hist. Geogr. 57, 40–51 (2017).
Huhtamaa, H. & Helama, S. Reconstructing crop yield variability in Finland: long-term perspective of the cultivation history on the agricultural periphery since ad 760. Holocene 27, 3–11 (2017).
Soininen, A. M. Vanha maataloutemme: Maatalous ja Maatalousväestö Suomessa Perinnäisen Maatalouden Loppukaudella 1720-Luvulta 1870-Luvulle (Suomen HIstoriallinen Seura, 1975).
Taavitsainen, J. P., Simola, H. & Grönlund, E. Cultivation history beyond the periphery: early agriculture in the north European boreal forest. J. World Prehist. 12, 199–253 (1998).
Korpela, J. Sisä-Suomen asuttaminen ja väestön kasvu myöhäiskeskiajalla ja uuden ajan alussa. Hist. Aikak. 110, 275–290 (2012).
Epstein, S. R. Freedom and Growth: The Rise of States and Markets in Europe, 1300–1750 (Routledge, 2006).
Bateman, V. N. The evolution of markets in early modern Europe, 1350–1800: a study of wheat prices 1. Econ. Hist. Rev. 64, 447–471 (2011).
Federico, G. How much do we know about market integration in Europe? 1. Econ. Hist. Rev. 65, 470–497 (2012).
Chilosi, D., Murphy, T. E., Studer, R. & Tunçer, A. C. Europe’s many integrations: geography and grain markets, 1620–1913. Explor. Econ. Hist. 50, 46–68 (2013).
Faugeron, F. Nourrir la Ville: Ravitaillement, Marchés et Métiers de l’Alimentation à Venise dans les Derniers Siècles du Moyen Âge (École Française de Rome, 2014).
Hämäläinen, P. The Comanche Empire (Yale Univ. Press, 2008).
Hambrecht, G. Zooarchaeology and modernity in Iceland. Int. J. Hist. Archaeol. 16, 472–487 (2012).
Hartman, S. et al. Medieval Iceland, Greenland, and the new human condition: a case study in integrated environmental humanities. Global Planet. Change 156, 123–139 (2017).
Laylander, D. The last days of Lake Cahuilla: the Elmore site. Pac. Coast Archaeol. Soc. Q. 33, 1–69 (1997).
Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term paleoclimate context. J. Quat. Sci. 25, 48–61 (2010).
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).
Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (Univ. of California Press, 2005).
Smith, B. D. The Subsistence Economies of Indigenous North American Societies: A Handbook (Smithsonian Institution, 2011).
Huckell, B. B. A Ground Stone Implement Quarry on the Lower Colorado River, Northwestern Arizona (Cultural Resource Series 3) (Bureau of Land Management, 1986).
Luthin, H. W. Surviving Through the Days: Translations of Native California Stories and Songs, A California Indian Reader (Univ. of California Press, 2002).
Hegmon, M. The Archaeology of Regional Interaction: Religion, Warfare, and Exchange Across the American Southwest and Beyond (Univ. of Colorado Press, 2000).
Zappia, N. A. Traders and Raiders: The Indigenous World of the Colorado Basin, 1540–1859 (UNC Press, 2014).
Guillet, S. et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 10, 123–128 (2017).
Lavigne, F. et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia. Proc. Natl Acad. Sci. USA 110, 16742–16747 (2013).
Campbell, B. M. S. Global climates, the 1257 mega-eruption of Samalas volcano, Indonesia and the English food crisis of 1258. Trans. R. Hist. Soc. 27, 87–121 (2017).
Bauch, M. in The Dance of Death in Late Medieval and Renaissance Europe. Environmental Stress, Mortality and Social Response (eds Kiss, A. & Pribyl, K.) 214–232 (Routledge, 2020).
Sánchez Rodrigo, F. in El Cambio Climático en Andalucía: Evolución y Consecuencias Medioambientales (eds Sousa, A. et al.) 25–41 (Alfecat Impresores, 2007).
Sánchez Rodrigo, F. A review of the Little Ice Age in Andalusia (southern Spain): results and research challenges. Cuadernos de Investigación Geográfica 44, 245–265 (2018).
Ponsot, P. Atlas de la Historia Económica de la Baja Andalucía, Siglos XVI–XIX (Editoriales Andaluzas Unidas, 1986).
Ortiz, A. D. Alteraciones Andaluzas (Narcea, 1973).
Glaser, R. & Riemann, D. A thousand‐year record of temperature variations for Germany and central Europe based on documentary data. J. Quat. Sci. 24, 437–449 (2009).
Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (2016).
Berger, P. Pontchartrain and the grain trade during the famine of 1693. J. Mod. Hist. 48, 37–86 (1976).
Jacques, D., Le Roy Ladurie, E. & Sauvy, A. (eds) Histoire de la Population Française, first ed. (Presses Univ. France, 1988).
Lachiver, M. Les Années de Misère: La Famine au Temps du Grand Roi, 1680–1720 (Fayard, 1991).
Le Roy Ladurie, E. & Rousseau, D. Impact du climat sur la mortalité en France, de 1680 à l’époque actuelle. Meteorologie 64, 43–53 (2009).
Dieppois, B. et al. Multidecadal climate variability over northern France during the past 500 years and its relation to large‐scale atmospheric circulation. Int. J. Climatol. 36, 4679–4696 (2016).
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).
Goubert, P. Beauvais et Le Beauvaisis de 1600 à 1730: Contribution à l’Histoire Sociale de la France du XVIIe Siècle (Éditions de l’École des Hautes Études en Sciences Sociales, 1982).
Glaser, R. & Hagedorn, H. Die Überschwemmungskatastrophe von 1784 im Maintal. Eine Chronologie ihrer witterungsklimatischen Voraussetzungen und Auswirkungen. Erde 121, 1–14 (1990).
Demarée, G. R. The catastrophic floods of February 1784 in and around Belgium—a Little Ice Age event of frost, snow, river ice … and floods. J. Sci. Hydro. 51, 878–898 (2006).
Glaser, R. et al. The variability of European floods since ad 1500. Clim. Change 101, 235–256 (2010).
Brázdil, R. et al. European Floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theor. Appl. Climatol. 100, 163–189 (2010).
Benito, G., Brázdil, R., Herget, J. & Machado, M. J. Quantitative historical hydrology in Europe. Hydrol. Earth Syst. Sci. 19, 3517–3539 (2015).
Weichselgartner, J. Naturgefahren als Soziale Konstruktion. Eine Geographische Beobachtung der Gesellschaftlichen Auseinandersetzung mit Naturrisiken (Rheinische Friedrich Wilhelms Univ. Bonn, 2001).
Benson, L., Petersen, K. & Stein, J. Anasazi (pre-Columbian Native-American) migrations during the middle-12th and late-13th centuries–were they drought induced? Clim. Change 83, 187–213 (2007).
Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).
Shen, C., Wang, W. C., Hao, Z. & Gong, W. Exceptional drought events over eastern China during the last five centuries. Clim. Change 85, 453–471 (2007).
Fang, K. et al. Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Global Planet. Change 80-81, 190–197 (2012).
Zhang, H. et al. East Asian warm season temperature variations over the past two millennia. Sci. Rep. 8, 7702 (2018).
Sun, C. & Liu, Y. Tree-ring-based drought variability in the eastern region of the silk road and its linkages to the Pacific Ocean. Ecol. Indic. 96, 421–429 (2019).
Brook, T. The Troubled Empire: China in the Yuan and Ming Dynasties (Harvard Univ. Press, 2010).
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389–392 (2013).
Tierney, J. E. et al. Late-twentieth-century warming in Lake Tanganyika unprecedented since ad 500. Nat. Geosci. 3, 422–425 (2010).
Anchukaitis, K. J. & Tierney, J. E. Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. Clim. Dyn. 41, 1291–1306 (2013).
Sletten, H. R. et al. A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 376, 149–162 (2013).
Voarintsoa, N. R. G. et al. Stalagmite multi-proxy evidence of wet and dry intervals in northeastern Namibia: linkage to latitudinal shifts of the Inter-Tropical Convergence Zone and changing solar activity from ad 1400 to 1950. Holocene 27, 384–396 (2017).
de Luna, K. M. Surveying the boundaries of history and archaeology: early Botatwe settlement in south central Africa and the ‘sibling disciplines’ debate. Afr. Archaeol. Rev. 29, 209–251 (2012).
de Luna, K. M. Collecting Food, Cultivating People: Subsistence and Society in Central Africa (Yale Univ. Press, 2016).
de Luna, K. M. & Fleisher, J. B. Speaking with Substance: Methods of Language and Materials in African History (Springer, 2019).
Nash, D. J. et al. African hydroclimatic variability during the last 2000 years. Quat. Sci. Rev. 154, 1–22 (2016).
de Luna, K. M. Classifying Botatwe: M.60 and K.40 languages and the settlement chronology of south central Africa. Afr. Linguist. 16, 65–96 (2010).
Hoegh-Guldberg, O. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, 2018).
O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).
Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).
van Weezel, S. Local warming and violent armed conflict in Africa. World Dev. 126, 104708 (2020).
Wilson, R. et al. Last millennium northern hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).
Schneider, L. et al. Revising midlatitude summer temperatures back to ad 600 based on a wood density network. Geophys. Res. Lett. 42, 4556–4562 (2015).
Anchukaitis, K. J. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part II, spatially resolved reconstructions. Quat. Sci. Rev. 163, 1–22 (2017).
Acknowledgements
We thank the Georgetown Environment Initiative for providing support for the workshop that launched this project; the Georgetown Humanities Initiative for fostering dialogue between co-authors at Georgetown University; and R. Hoffmann, J. Luterbacher, J. R. McNeill and S. White for comments and criticism. Audiences at the University of Arizona, Georgetown University, the University of Manitoba and the University of Texas at Austin provided comments that improved this article. K.A. acknowledges support from NSF grants CNH- 0908971 and CNH-1210360; K.K. acknowledges support from the Andrea von Braun Foundation; M.B. acknowledges support from the Volkswagen Foundation’s Freigeist Fellowship ‘The Dantean Anomaly’; and E.X. acknowledges support from the Federal Ministry of Education and Research (BMBF) projects ClimXtreme/CROP and RegIKlim/NUKLEUS.
Author information
Authors and Affiliations
Contributions
D.D. designed the study, organized and attended the planning workshop, revised the case studies, wrote complete paper drafts, and created all tables and diagrams. K.A., M.B., J.B., K.d.L., K.K., T.N., E.X. and Q.P. attended the workshop and revised the study design. K.A. wrote sections on palaeoclimate and created all figures using climate reconstructions. E.M., N.N. K.A. and P.G. interpreted models and statistics. M.B., J.B., F.C., J.C., D.D., K.d.L., G.H., H.H., A.I., K.K., T.N., Q.P., E.X. and N.Z. contributed and revised case studies. K.A., D.D., K.d.L., G.H., H.H., A.I., K.K., T.N. and E.X. revised paper drafts.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks Manon Bajard, Michael Frachetti, Markus Stoffel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains Supplementary Figure 1, showing the geographical locations covered by our case studies, Supplementary Figures 2-4, which provide additional information about our case studies and our methods for developing and revising them, and Supplementary References.
Rights and permissions
About this article
Cite this article
Degroot, D., Anchukaitis, K., Bauch, M. et al. Towards a rigorous understanding of societal responses to climate change. Nature 591, 539–550 (2021). https://doi.org/10.1038/s41586-021-03190-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-03190-2
This article is cited by
-
Frequent disturbances enhanced the resilience of past human populations
Nature (2024)
-
High-frequency climate forcing causes prolonged cold periods in the Holocene
Communications Earth & Environment (2024)
-
Is Culture Learned? The Neglected Role of Evoking Events
Integrative Psychological and Behavioral Science (2024)
-
Ellipse or superellipse for tree-ring geometries? evidence from six conifer species
Trees (2024)
-
Collapse Studies in Archaeology from 2012 to 2023
Journal of Archaeological Research (2024)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.