Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf

Matters Arising to this article was published on 02 February 2022

Abstract

Following early hypotheses about the possible existence of Arctic ice shelves in the past1,2,3, the observation of specific erosional features as deep as 1,000 metres below the current sea level confirmed the presence of a thick layer of ice on the Lomonosov Ridge in the central Arctic Ocean and elsewhere4,5,6. Recent modelling studies have addressed how an ice shelf may have built up in glacial periods, covering most of the Arctic Ocean7,8. So far, however, there is no irrefutable marine-sediment characterization of such an extensive ice shelf in the Arctic, raising doubt about the impact of glacial conditions on the Arctic Ocean. Here we provide evidence for at least two episodes during which the Arctic Ocean and the adjacent Nordic seas were not only covered by an extensive ice shelf, but also filled entirely with fresh water, causing a widespread absence of thorium-230 in marine sediments. We propose that these Arctic freshwater intervals occurred 70,000–62,000 years before present and approximately 150,000–131,000 years before present, corresponding to portions of marine isotope stages 4 and 6. Alternative interpretations of the first occurrence of the calcareous nannofossil Emiliania huxleyi in Arctic sedimentary records would suggest younger ages for the older interval. Our approach explains the unexpected minima in Arctic thorium-230 records9 that have led to divergent interpretations of sedimentation rates10,11 and hampered their use for dating purposes. About nine million cubic kilometres of fresh water is required to explain our isotopic interpretation, a calculation that we support with estimates of hydrological fluxes and altered boundary conditions. A freshwater mass of this size—stored in oceans, rather than land—suggests that a revision of sea-level reconstructions based on freshwater-sensitive stable oxygen isotopes may be required, and that large masses of fresh water could be delivered to the north Atlantic Ocean on very short timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A selection of 230Thex and 10Be records from the Arctic Ocean and the Nordic seas.
Fig. 2: Properties of sediment cores PS72/396-3 and -5 from the Amerasian Basin.

Similar content being viewed by others

Data availability

The datasets used and generated during the current study are available in the PANGAEA data repository, https://doi.org/10.1594/PANGAEA.914629, where the previously published datasets are also linked and referenced.

References

  1. Mercer, J. H. A former ice sheet in the Arctic Ocean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 8, 19–27 (1970).

    Article  Google Scholar 

  2. Hughes, T., Denton, G. & Grosswald, M. Was there a late-Würm Arctic ice sheet? Nature 266, 596–602 (1977).

    Article  ADS  Google Scholar 

  3. Broecker, W. S. Floating glacial ice caps in the Arctic Ocean. Science 188, 1116–1118 (1975).

    Article  Google Scholar 

  4. Jakobsson, M. et al. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Global Planet. Change 31, 1–22 (2001).

    Article  ADS  Google Scholar 

  5. Jakobsson, M. et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat. Commun. 7, 10365 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Polyak, L., Edwards, M. H., Coakley, B. J. & Jakobsson, M. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–457 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Gasson, E. G. W., DeConto, R. M., Pollard, D. & Clark, C. D. Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nilsson, J. et al. Ice-shelf damming in the glacial Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice shelf. Cryosphere 11, 1745–1765 (2017).

    Article  ADS  Google Scholar 

  9. Ku, T.-L. & Broecker, W. S. Rates of sedimentation in the Arctic Ocean. Prog. Oceanogr. 4, 95–104 (1965).

    Article  ADS  CAS  Google Scholar 

  10. Huh, C.-A., Pisias, N. G., Kelley, J. M., Maiti, T. C. & Grantz, A. Natural radionuclides and plutonium in sediments from the western Arctic Ocean: sedimentation rates and pathways of radionuclides. Deep Sea Res. Part II 44, 1725–1743 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Hoffmann, S. & McManus, J. Is there a 230Th deficit in Arctic sediments? Earth Planet. Sci. Lett. 258, 516–527 (2007).

    Article  ADS  CAS  Google Scholar 

  12. Henderson, G. M. Seawater (234U/238U) during the last 800 thousand years. Earth Planet. Sci. Lett. 199, 97–110 (2002).

    Article  ADS  CAS  Google Scholar 

  13. Francois, R., Frank, M., van der Loeff, M. M. R. & Bacon, M. P. Th-230 normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018 (2004).

  14. Costa, K. M. et al. 230Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean. Paleoceanogr. Paleoclim. 35, e2019PA003820 (2020).

    Article  Google Scholar 

  15. Anderson, R. F., Bacon, M. P. & Brewer, P. G. Removal of 230Th and 231Pa from the open ocean. Earth Planet. Sci. Lett. 62, 7–23 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Yang, H. S., Nozaki, Y., Sakai, H. & Masuda, A. The distribution of 230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean. Geochim. Cosmochim. Acta 50, 81–89 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Jakobsson, M. et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28, 23–26 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Backman, J., Jakobsson, M., Løvlie, R., Polyak, L. & Febo, L. A. Is the central Arctic Ocean a sediment-starved basin? Quat. Sci. Rev. 23, 1435–1454 (2004).

    Article  ADS  Google Scholar 

  19. Jang, K. et al. Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean. Earth Planet. Sci. Lett. 369–370, 148–157 (2013).

    Article  ADS  CAS  Google Scholar 

  20. Not, C. & Hillaire-Marcel, C. Time constraints from 230Th and 231Pa data in late Quaternary, low sedimentation rate sequences from the Arctic Ocean: an example from the northern Mendeleev Ridge. Quat. Sci. Rev. 29, 3665–3675 (2010).

    Article  ADS  Google Scholar 

  21. Hillaire-Marcel, C. et al. A new chronology of late Quaternary sequences from the central Arctic Ocean based on “extinction ages” of their excesses in 231Pa and 230Th. Geochem. Geophys. Geosyst. 18, 4573–4585 (2017).

    Article  ADS  CAS  Google Scholar 

  22. Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice-sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).

    Article  ADS  Google Scholar 

  23. O’Regan, M., Backman, J., Fornaciari, E., Jakobsson, M. & West, G. Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back to 500 ka. Geology 48, 1115–1119 (2020).

  24. Eisenhauer, A. et al. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 475–487 (Kluwer Academic, 1990).

  25. Paetsch, H. Sedimentation im Europäischen Nordmeer: Radioisotopische, Geochemische und Tonmineralogische Untersuchungen Spätquartärer Ablagerungen. Report No. 29 (Christian-Albrechts-Universität, 1991).

  26. Scholten, J. C. et al. High resolution 230Thex stratigraphy of sediments from high-latitude areas (Norwegian Sea, Fram Strait). Earth Planet. Sci. Lett. 101, 54–62 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Scholten, J., Botz, R., Paetsch, H., Stoffers, P. & Weinelt, M. High-resolution uranium-series dating of Norwegian–Greenland Sea sediments: 230Th vs. δ18O stratigraphy. Mar. Geol. 121, 77–85 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Henderson, G. M., Heinze, C., Anderson, R. F. & Winguth, A. M. Global distribution of the 230Th flux to ocean sediments constrained by GCM modelling. Deep Sea Res. Part I 46, 1861–1893 (1999).

    Article  CAS  Google Scholar 

  29. Valk, O. et al. Importance of hydrothermal vents in scavenging removal of 230Th in the Nansen Basin. Geophys. Res. Lett. 45, 10539–10548 (2018).

    Article  ADS  CAS  Google Scholar 

  30. Chauhan, T., Noormets, R. & Rasmussen, T. L. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary. Geo-Mar. Lett. 36, 81–99 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Brendryen, J., Haflidason, H., Yokoyama, Y., Haaga, K. A. & Hannisdal, B. Eurasian Ice Sheet collapse was a major source of Meltwater Pulse 1A 14,600 years ago. Nat. Geosci. 13, 363–368 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Strobl, C. Datierung von Sedimentkernen und Rekonstruktion der Transportwege der Radionuklide 10Be, 230Th und 231Pa in Hohen Nördlichen Breiten. PhD thesis, Ruprecht-Karls-Universität (1998).

  33. Spielhagen, R. F. et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets. Geology 25, 783–786 (1997).

    Article  ADS  Google Scholar 

  34. Jakobsson, M. et al. Arctic Ocean glacial history. Quat. Sci. Rev. 92, 40–67 (2014).

    Article  Google Scholar 

  35. Unterman, M. B., Crowley, T. J., Hodges, K. I., Kim, S.-J. & Erickson, D. J. Paleometeorology: high-resolution Northern Hemisphere wintertime mid-latitude dynamics during the last glacial maximum. Geophys. Res. Lett. 38, (2011).

  36. Sidorchuk, A. Y., Panin, A., Borisova, O., Elias, S. & Syvistki, J. Channel morphology and river flow in the northern Russian Plain in the Late Glacial and Holocene. Int. J. Earth Sci. 89, 541–549 (2000).

    Article  Google Scholar 

  37. Jakobsson, M. Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochem. Geophys. Geosyst. 3, 1–18 (2002).

    Article  Google Scholar 

  38. Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441, 606–609 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun. 8, 15681 (2017).

  40. Kuijpers, A. & Werner, F. Extremely deep-draft iceberg scouring in the glacial North Atlantic Ocean. Geo-Mar. Lett. 27, 383–389 (2007).

    Article  ADS  Google Scholar 

  41. Schmidt, M. W., Spero, H. J. & Lea, D. W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, 160–163 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662–665 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Williams, D. F., Moore, W. S. & Fillon, R. H. Role of glacial Arctic Ocean ice sheets in Pleistocene oxygen isotope and sea level records. Earth Planet. Sci. Lett. 56, 157–166 (1981).

    Article  ADS  CAS  Google Scholar 

  44. Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

    Article  ADS  Google Scholar 

  45. Rohling, E. J. et al. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).

    Article  ADS  Google Scholar 

  46. Hoffmann, S. S., McManus, J. F., Curry, W. B. & Brown-Leger, L. S. Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years. Nature 497, 603–606 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Frank, M. & Eisenhauer, A. Radionuclides analysed on sediment core PS1533-3 from the Arctic Ocean. PANGAEA https://doi.org/10.1594/PANGAEA.50830 (1996).

  48. Eisenhauer, A. et al. 10Be records of sediment cores from high northern latitudes: implications for environmental and climatic changes. Earth Planet. Sci. Lett. 124, 171–184 (1994).

    Article  ADS  CAS  Google Scholar 

  49. Geibert, W., Stimac, I., Rutgers van der Loeff, M. M. & Kuhn, G. Dating deep-sea sediments with 230Th excess using a constant rate of supply model. Paleoceanogr. Paleoclimatol. 34, 1895–1912 (2019).

    Article  ADS  Google Scholar 

  50. Matthiessen, J. Linescanner images of sediment core PS72/396-5. PANGAEA https://doi.org/10.1594/PANGAEA.817507 (2013).

  51. Matthiessen, J. Linescanner images of sediment core PS72/396-3. PANGAEA https://doi.org/10.1594/PANGAEA.817506 (2013).

  52. Missiaen, L. et al. Downcore variations of sedimentary detrital (238U/232Th) ratio: implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation. Geochem. Geophys. Geosyst. 19, 2560–2573 (2018).

    Article  ADS  CAS  Google Scholar 

  53. Ku, T. L. An evaluation of the U234/U238 method as a tool for dating pelagic sediments. J. Geophys. Res. 70, 3457–3474 (1965).

    Article  ADS  CAS  Google Scholar 

  54. Nowaczyk, N. R., Frederichs, T. W., Eisenhauer, A. & Gard, G. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophys. J. Int. 117, 453–471 (1994).

    Article  ADS  Google Scholar 

  55. Wiers, S., Snowball, I., O’Regan, M. & Almqvist, B. Late Pleistocene chronology of sediments from the Yermak Plateau and uncertainty in dating based on geomagnetic excursions. Geochem. Geophys. Geosyst. 20, 3289–3310 (2019).

    Article  ADS  Google Scholar 

  56. Kremer, A. et al. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka – reconstructions from biomarker records. Quat. Sci. Rev. 182, 93–108 (2018).

    Article  ADS  Google Scholar 

  57. Sanchez Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).

    Article  ADS  Google Scholar 

  58. Nørgaard‐Pedersen, N., Spielhagen, R. F., Thiede, J. & Kassens, H. Central Arctic surface ocean environment during the past 80,000 years. Paleoceanography 13, 193–204 (1998).

    Article  ADS  Google Scholar 

  59. Adler, R. E. et al. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Global Planet. Change 68, 18–29 (2009).

    Article  ADS  Google Scholar 

  60. Stein, R. et al. Towards a better (litho-)stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung 79, 97–121 (2010).

    Google Scholar 

  61. Stein, R., Matthiessen, J. & Niessen, F. Re-coring at Ice Island T3 site of key core FL-224 (Nautilus Basin, Amerasian Arctic): sediment characteristics and stratigraphic framework. Polarforschung 79, 81–96 (2010).

    Google Scholar 

  62. Poore, R., Osterman, L., Curry, W. & Phillips, R. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27, 759–762 (1999).

    Article  ADS  CAS  Google Scholar 

  63. Polyak, L. et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global Planet. Change 68, 5–17 (2009).

    Article  ADS  Google Scholar 

  64. Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).

    Article  ADS  Google Scholar 

  65. Jakobsson, M., Backman, J., Murray, A. & Løvlie, R. Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates. Geochem. Geophys. Geosyst. 4, (2003).

  66. Backman, J., Fornaciari, E. & Rio, D. Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossil abundances across the Arctic Basin. Mar. Micropaleontol. 72, 86–98 (2009).

    Article  ADS  Google Scholar 

  67. Gard, G. & Backman, J. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 417–436 (Springer, 1990).

  68. Fütterer, D. K. (ed.) ARCTIC ’91: the expedition ARK-Vllll3 of RV “Polarstern” in 1991. Berichte Polarforsch. 107, 1–267 (1992); https://doi.org/10.2312/BzP_0107_1992

  69. Jokat, W. (ed.) ARCTIC ’98: the expedition ARKTIS-XVl2 of “Polarstern” in 1999. Berichte Polarforsch. 308,1–159 (1999); https://doi.org/10.2312/BzP_0308_1999

  70. Jokat, W. (ed.) The expedition of the research vessel “Polarstern” to the Arctic in 2008 (ARK-XXIII/3). Berichte Polar- Meeresforsch. 597, 1–266 (2009); https://doi.org/10.2312/BzPM_0597_2009

  71. Stein, R. The expedition PS87 of the research vessel POLARSTERN to the Arctic Ocean in 2014. Berichte Polar- Meeresforsch. 688, 1–273 (2015); https://doi.org/10.2312/BzPM_0688_2015

  72. Polyak, L., Curry, W. B., Darby, D. A., Bischof, J. & Cronin, T. M. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 73–93 (2004).

    Article  Google Scholar 

  73. März, C. et al. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochim. Cosmochim. Acta 75, 7668–7687 (2011).

    Article  ADS  CAS  Google Scholar 

  74. Feyling-Hanssen, R. W. Foraminiferal Stratigraphy in the Plio–Pleistocene Kap København Formation, North Greenland Vo. 24 (Museum Tusculanum Press, 1990).

  75. McNeil, D. et al. Sequence stratigraphy, biotic change, 87Sr/86Sr record, paleoclimatic history, and sedimentation rate change across a regional late Cenozoic unconformity in Arctic Canada. Can. J. Earth Sci. 38, 309–331 (2001).

    Article  ADS  Google Scholar 

  76. Nürnberg, D. et al. Sediments in Arctic sea ice: implications for entrainment, transport and release. Mar. Geol. 119, 185–214 (1994).

    Article  ADS  Google Scholar 

  77. Wollenburg, I. Sedimenttransport durch das arktische Meereis: die rezente lithogene und biogene Materialfracht. Sediment transport by Arctic Sea ice: the recent load of lithogenic and biogenic material. Berichte Polarforsch. 127, 1–159 (1993); https://doi.org/10.2312/BzP_0127_1993

  78. Green, K. E. Ecology of some Arctic foraminifera. Micropaleontology 6, 57–78 (1960).

    Article  Google Scholar 

  79. Wollenburg, J. Benthische Foraminiferenfaunen als Wassermassen-, Produktions- und Eisdriftanzeiger im Arktischen Ozean (benthic foraminiferal assemblages in the Arctic Ocean: indicators for water mass distribution, productivity, and sea ice drift). Berichte Polarforsch. 179, 1–227 (1995); https://doi.org/10.2312/BzP_0179_1995

  80. Wollenburg, J. E., Mackensen, A. & Kuhnt, W. Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255, 195–222 (2007).

    Article  Google Scholar 

  81. Darby, D. A., Myers, W. B., Jakobsson, M. & Rigor, I. Modern dirty sea ice characteristics and sources: the role of anchor ice. J. Geophys. Res. Oceans 116, C09008 (2011).

  82. Evans, J. R. & Kaminski, M. A. Pliocene and Pleistocene chronostratigraphy and paleoenvironment of the central Arctic Ocean, using deep water agglutinated foraminifera. Micropaleontology 44, 109–130 (1998).

    Article  Google Scholar 

  83. Wollenburg, J. E., Kuhnt, W. & Mackensen, A. Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography 16, 65–77 (2001).

    Article  ADS  Google Scholar 

  84. Pham, M. et al. A new Certified Reference Material for radionuclides in Irish sea sediment (IAEA-385). Appl. Radiat. Isot. 66, 1711–1717 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Nowaczyk, N. R. & Baumann, M. Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep Sea Res. Part A 39, S567–S601 (1992).

    Article  ADS  Google Scholar 

  86. Pagels, U. Sedimentologische Untersuchungen und Bestimmung der Karbonatlösung in spätquartären Sedimenten des östlichen arktischen Ozeans. GEOMAR Report No. 10 (GEOMAR Forschungszentrum für marine Geowissenschaften, 1991).

Download references

Acknowledgements

We thank D. Bethke and L. Schäfer for the lab work on the sediment cores. This work was funded through the research programme of the Helmholtz Foundation. Sample requests should be directed to the curator of the Polarstern core repository at the Alfred Wegener Institute (e-mail: curator@awi.de).

Author information

Authors and Affiliations

Authors

Contributions

W.G. developed the concept and wrote the main text. Together with I.S., he developed the analytical scheme and led the elemental and radioisotope analyses. J.M. contributed data and text regarding the lithology and the synthesis of data. J.W. contributed data and text regarding the micropalaeontological situation, oxygen and carbon isotopes of core PS72/396-3. R.S. led the sampling efforts, described and developed the lithological units of the studied sediment cores and contributed data and text. All authors contributed to the discussion and to Methods.

Corresponding author

Correspondence to Walter Geibert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Depth profile along the transect A–B along the Greenland–Scotland Ridge (GSR) shown in Fig. 1.

The shaded bars are schematic examples of assumed reductions of water depths at peak glacials (sea-level reduction, 120 m; sea ice, 60 m; shelf ice, 450 m). The sum of depths does not equal the thickness shown because icebergs are embedded and floating within water and sea ice, not below it. Additional adjustments would be necessary to reflect isostatic changes of water depths. Please note that the thickness of sea ice shown here is an estimate, assuming permanent sea-ice cover and brackish or fresh water at the sea surface in peak glacials. The assumed thickness of potential iceberg/ice-shelf reach is very conservative, less than one half the deepest observed plowmark.

Extended Data Fig. 2 Properties of sediment core PS51/038-4 from the Alpha Ridge, Amerasian Basin.

af, Isotopic and elemental composition of PS51/038-4. g, Photograph of sediment core PS51/038-4. White labels in the line scan indicate common stratigraphic units in western Arctic sediments (see Methods). h, Counts of planktonic foraminifera (green, bottom axis, in counts per gram, #g), sand content (>63 μm; blue, top axis) and the stable carbon (pink, bottom axis) and oxygen (blue, top axis) isotope composition of N. pachyderma. Blue shading indicates the two major low-230Thex intervals discussed in the text. Error bars denote one standard deviation precision; data on analytical reproducibility are in Extended Data Table 2. The precision of the stable isotope measurements has been found to be better than 0.06‰ and 0.08‰ (absolute) for δ13C and δ18O, respectively, over a one-year period.

Extended Data Fig. 3 Stable oxygen and carbon isotopes of N. pachyderma, abundance of planktonic foraminifera, and sand content for four locations in the Arctic22.

ad, Data for cores PS72/396-3 (a), PS51/038-4 (b), PS2200-5 (c) and PS2185-6 (d). For core PS72/396-3 (a) only, we also show the relative abundance of allochtonous foraminifera (orange, top axis). The low-230Thex intervals are indicated by blue shading. In c, d, indicated at the left of the y axis are the oldest corrected radiocarbon ages58. Please note that a reservoir age correction of 400 years was applied in the original reference. The precision of the stable isotope measurements has been found to be better than 0.06‰ and 0.08‰ (absolute) for δ13C and δ18O, respectively, over a one-year period.

Extended Data Fig. 4 Compilation of various parameters reported for sediment core PS1533-3 from Yermak Plateau (Eurasian Basin).

Left to right: 230Thex from ref. 47 as blue dots, recalculated (but not decay-corrected) and corrected for ingrowth from authigenic uranium (Uauth) using a published age scale22; Uauth calculated using a U/Th activity ratio of 0.6 as green/black dots, using 232Th from ref. 47 and 10Be from ref. 48 as small red dots. Magnetic volume susceptibility kappa (dimensionless in SI units) from ref. 85 is shown as yellow dots. Total organic carbon (TOC) as anthracite/black dots and calcium carbonate86 as small grey dots. Stable isotope values for 13C (magenta) and 18O (blue) in N. pachyderma from ref. 22. Abundance of planktonic foraminifera86 as green dots. Sand content as a blue dotted line from ref. 47. The ages for the respective boundaries of the low-230Thex intervals are shown as discrete numbers; the MIS boundaries shown as grey bars on the right follow ref. 22. The low-230Thex intervals identified throughout the Arctic are highlighted in blue (see Fig. 1). The MIS 2 interval only seen in rapidly accumulating cores is highlighted in pink. Analytical uncertainties are not shown; the values are available for the U-series isotopes and for 10Be in the publicly available dataset (see Methods section ‘Data availability’).

Extended Data Fig. 5 Schematic visualization of the situation during glacial fresh Arctic Ocean intervals.

Bering Strait and other outflows are blocked for inflowing seawater (green) by lowered sea levels. A floating Arctic ice shelf up to 1,000-m thick builds up, leaving grounding evidence on Lomonosov Ridge and on the GSR. Freshwater (light blue) from the entire drainage basin of the Arctic Ocean is forced through Fram Strait and eventually the narrow channels of the GSR (flow shown by blue dotted arrow). Seawater is prevented from flowing into this ice-dammed system with strong outflow. However, even a small change at the GSR can lead to seawater quickly filling the Arctic from the bottom (green arrow), displacing substantial amounts of freshwater into the Atlantic in a very short time period (for example, Heinrich event H6), triggering melting in the Nordic seas and possibly beyond. This figure is not drawn to scale and serves only to visualize the processes described in the text.

Extended Data Table 1 Core locations and origin of 230Th data shown
Extended Data Table 2 Details on analytical reproducibility for the U-series and elemental measurements on cores PS51/038-4 and PS72/396-5

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geibert, W., Matthiessen, J., Stimac, I. et al. Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf. Nature 590, 97–102 (2021). https://doi.org/10.1038/s41586-021-03186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03186-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing