Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-assembly of a layered two-dimensional molecularly woven fabric


Fabrics—materials consisting of layers of woven fibres—are some of the most important materials in everyday life1. Previous nanoscale weaves2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 include isotropic crystalline covalent organic frameworks12,13,14 that feature rigid helical strands interlaced in all three dimensions, rather than the two-dimensional17,18 layers of flexible woven strands that give conventional textiles their characteristic flexibility, thinness, anisotropic strength and porosity. A supramolecular two-dimensional kagome weave15 and a single-layer, surface-supported, interwoven two-dimensional polymer16 have also been reported. The direct, bottom-up assembly of molecular building blocks into linear organic polymer chains woven in two dimensions has been proposed on a number of occasions19,20,21,22,23, but has not previously been achieved. Here we demonstrate that by using an anion and metal ion template, woven molecular ‘tiles’ can be tessellated into a material consisting of alternating aliphatic and aromatic segmented polymer strands, interwoven within discrete layers. Connections between slowly precipitating pre-woven grids, followed by the removal of the ion template, result in a wholly organic molecular material that forms as stacks and clusters of thin sheets—each sheet up to hundreds of micrometres long and wide but only about four nanometres thick—in which warp and weft single-chain polymer strands remain associated through periodic mechanical entanglements within each sheet. Atomic force microscopy and scanning electron microscopy show clusters and, occasionally, isolated individual sheets that, following demetallation, have slid apart from others with which they were stacked during the tessellation and polymerization process. The layered two-dimensional molecularly woven material has long-range order, is birefringent, is twice as stiff as the constituent linear polymer, and delaminates and tears along well-defined lines in the manner of a macroscopic textile. When incorporated into a polymer-supported membrane, it acts as a net, slowing the passage of large ions while letting smaller ions through.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: X-ray crystal structure of interwoven 3 × 3 molecular grid [Fe916](BF4)18, and the synthesis of thiol- and disulfide-derivatives 2, 3 and [Fe926](BF4)18.
Fig. 2: Bottom-up self-assembly of layered 2D molecularly woven fabric 4.
Fig. 3: Images of layered 2D molecularly woven fabric 4, and evidence for long-range order.
Fig. 4: Microscopy imaging of layered 2D molecularly woven fabric 4.
Fig. 5: Ion permeability studies on PVDF-supported membranes formed from unwoven linear polymer 3 and 2D woven polymer 4.

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information, or are available from the Mendeley data repository ( with the identifier


  1. Kadolph, S. J. (ed.) Textiles 10th edn (Prentice-Hall, 2007).

  2. Batten, S. R. & Robson, R. Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998).

    Google Scholar 

  3. Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).

    CAS  Google Scholar 

  4. Van Calcar, P. M., Olmstead, M. M. & Balch, A. L. Construction of a knitted crystalline polymer through the use of gold(i)–gold(i) interactions. Chem. Commun. 1773–1774 (1995).

  5. Axtell, E. A., III, Liao, J.-H. & Kanatzidis, M. G. Flux synthesis of LiAuS and NaAuS: “Chicken-wire-like” layer formation by interweaving of (AuS)nn threads. Comparison with α-HgS and AAuS (A = K, Rb). Inorg. Chem. 37, 5583–5587 (1998).

    CAS  PubMed  Google Scholar 

  6. Carlucci, L., Ciani, G., Gramaccioli, A., Proserpio, D. M. & Rizzato, S. Crystal engineering of coordination polymers and architectures using the [Cu(2,2′-bipy)]2+ molecular corner as building block (bipy = 2,2′- bipyridyl). CrystEngComm 2, 154–163 (2000).

    Google Scholar 

  7. Li, Y.-H. et al. The first ‘two-over/two-under’ (2O/2U) 2D weave structure assembled from Hg-containing 1D coordination polymer chains. Chem. Commun. 1630–1631 (2003).

  8. Han, L. & Zhou, Y. 2D entanglement of 1D flexible zigzag coordination polymers leading to an interwoven network. Inorg. Chem. Commun. 11, 385–387 (2008).

    CAS  Google Scholar 

  9. Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology. J. Am. Chem. Soc. 133, 11406–11409 (2011).

    CAS  PubMed  Google Scholar 

  10. Champsaur, A. M. et al. Weaving nanoscale cloth through electrostatic templating. J. Am. Chem. Soc. 139, 11718–11721 (2017).

    CAS  PubMed  Google Scholar 

  11. Ciengshin, T., Sha, R. & Seeman, N. C. Automatic molecular weaving prototyped by using single-stranded DNA. Angew. Chem. Int. Ed. 50, 4419–4422 (2011).

    CAS  Google Scholar 

  12. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    ADS  CAS  PubMed  Google Scholar 

  13. Zhao, Y. et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 139, 13166–13172 (2017).

    CAS  PubMed  Google Scholar 

  14. Liu, Y. et al. Molecular weaving of covalent organic frameworks for adaptive guest inclusion. J. Am. Chem. Soc. 140, 16015–16019 (2018).

    CAS  PubMed  Google Scholar 

  15. Lewandowska, U. et al. A triaxial supramolecular weave. Nat. Chem. 9, 1068–1072 (2017).

    CAS  PubMed  Google Scholar 

  16. Wang, Z. et al. Molecular weaving via surface-templated epitaxy of crystalline coordination networks. Nat. Commun. 8, 14442 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Servalli, M. & Schlüter, A. D. Synthetic two-dimensional polymers. Annu. Rev. Mater. Res. 47, 361–389 (2017).

    CAS  Google Scholar 

  18. Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011).

    ADS  PubMed  Google Scholar 

  19. Busch, D. H. Structural definition of chemical templates and the prediction of new and unusual materials. J. Incl. Phenom. Macrocycl. Chem 12, 389–395 (1992).

    CAS  Google Scholar 

  20. Hubin, T. J. & Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200–202, 5–52 (2000).

    Google Scholar 

  21. Cockriel, D. L. et al. The design and synthesis of pyrazine amide ligands suitable for the “tiles” approach to molecular weaving with octahedral metal ions. Inorg. Chem. Commun. 11, 1–4 (2008).

    CAS  Google Scholar 

  22. Wadhwa, N. R., Hughes, N. C., Hachem, J. A. & Mezei, G. Metal-templated synthesis of intertwined, functionalized strands as precursors to molecularly woven materials. RSC Adv. 6, 11430–11440 (2016).

    CAS  Google Scholar 

  23. Mena-Hernando, S. & Pérez, E. M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 48, 5016–5032 (2019).

    CAS  PubMed  Google Scholar 

  24. Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    CAS  PubMed  Google Scholar 

  25. Ayme, J.-F., Beves, J. E., Campbell, C. J. & Leigh, D. A. Template synthesis of molecular knots. Chem. Soc. Rev. 42, 1700–1712 (2013).

    CAS  PubMed  Google Scholar 

  26. Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    CAS  Google Scholar 

  27. Dietrich-Buchecker, C. O. & Sauvage, J.-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192 (1989).

    Google Scholar 

  28. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    ADS  CAS  PubMed  Google Scholar 

  29. Guo, J., Mayers, P. C., Breault, G. A. & Hunter, C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat. Chem. 2, 218–222 (2010).

    CAS  PubMed  Google Scholar 

  30. Ayme, J.-F. et al. A synthetic molecular pentafoil knot. Nat. Chem. 4, 15–20 (2012).

    CAS  Google Scholar 

  31. Prakasam, T. et al. Simultaneous self-assembly of a [2]catenane, a trefoil knot, and a Solomon link from a simple pair of ligands. Angew. Chem. Int. Ed. 52, 9956–9960 (2013).

    CAS  Google Scholar 

  32. Wood, C. S., Ronson, T. K., Belenguer, A. M., Holstein, J. J. & Nitschke, J. R. Two-stage directed self-assembly of a cyclic [3]catenane. Nat. Chem. 7, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  33. Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).

    ADS  CAS  PubMed  Google Scholar 

  34. Zhang, L. et al. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 10, 1083–1088 (2018).

    CAS  PubMed  Google Scholar 

  35. Leigh, D. A. et al. Tying different knots in a molecular strand. Nature 584, 562–568 (2020).

    ADS  CAS  PubMed  Google Scholar 

  36. Ruben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H. & Lehn, J.-M. Grid-type metal ion architectures: functional metallosupramolecular arrays. Angew. Chem. Int. Ed. 43, 3644–3662 (2004).

    CAS  Google Scholar 

  37. Dawe, L. N., Abedin, T. S. M. & Thompson, L. K. Ligand directed self-assembly of polymetallic [n × n] grids: rational routes to large functional molecular subunits? Dalton Trans. 1661–1675 (2008).

  38. Leigh, D. A. et al. A molecular endless (74) knot. Nat. Chem. (2020).

  39. Pakula, A. A. & Simon, M. I. Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor. Proc. Natl Acad. Sci. USA 89, 4144–4148 (1992).

    ADS  CAS  PubMed  Google Scholar 

  40. Sakamoto, R. et al. Coordination nanosheets (CONASHs): strategies, structures and functions. Chem. Commun. 53, 5781–5801 (2017).

    CAS  Google Scholar 

  41. de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).

    ADS  Google Scholar 

  42. Zhu, W. et al. Structure and electronic transport in graphene wrinkles. Nano Lett. 12, 3431–3436 (2012).

    ADS  CAS  PubMed  Google Scholar 

  43. Young, R. J. & Lovell, P. A. Introduction to Polymers 3rd edn (CRC Press, 2011).

  44. de Ruijter, C., Mendes, E., Boerstoel, H. & Picken, S. J. Orientational order and mechanical properties of poly(amide-block-aramid) alternating block copolymer films and fibers. Polymer 47, 8517–8526 (2006).

    Google Scholar 

  45. Kontturi, K., Murtomäki, L. & Manzanares, J. A. Ionic Transport Processes in Electrochemistry and Membrane Science (Oxford Univ. Press, 2014).

  46. Li, G. et al. Woven polymer networks via the topological transformation of a [2]catenane. J. Am. Chem. Soc. 142, 14343–14349 (2020).

    CAS  PubMed  Google Scholar 

  47. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    ADS  CAS  PubMed  Google Scholar 

  48. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    CAS  Google Scholar 

  49. Wu, Q. et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 358, 1434–1439 (2017).

    ADS  CAS  PubMed  Google Scholar 

  50. Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).

    ADS  CAS  PubMed  Google Scholar 

Download references


We thank the Engineering and Physical Sciences Research Council (EPSRC; EP/P027067/1), the European Research Council (ERC; Advanced Grant no. 786630), and the Defense Advanced Research Projects Agency (DARPA; Co-operative Agreement W911NF-17-2-0148) for funding; with networking contributions from the COST Action CA17139, EUTOPIA. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government. We also thank the Diamond Light Source (UK) for synchrotron beam time on I19 (XR029), the University of Manchester, Department of Chemistry microanalysis and mass spectrometry services, the Henry Royce Institute for Advanced Materials (funded through EPSRC grants EP/R00661X/1 and EP/P025021/1) for the use of facilities, S. Jantzen/Biocinematics for the video animations, and S. J. Rowan (University of Chicago) and R. P. Sijbesma (Eindhoven University) for comments that improved the draft manuscript. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations



D.P.A., L.I.P., J.-F.L. and Y.S. carried out the synthesis and general characterization studies. G.F.S.W. solved the crystal structure of [Fe916](BF4)18. Z.L., C.A.M. and R.J.Y. carried out the AFM studies. Z.L. and R.J.Y. performed the Young’s modulus, polarized optical microscope and deformation experiments. S.J.H. conducted the transmission electron microscopy studies, and R.A.W.D. and P.R.C.K. conducted the ion permeation studies. D.A.L. directed the research. All authors contributed to the analysis of the results and the writing of the manuscript. Authors are listed alphabetically in view of the broad range of experimental techniques used in this study.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, methods and characterisation data.

Video 1

(MPEG-4) Animation of the assembly of the 2D molecularly woven fabric. Video credit: Stuart Jantzen (Biocinematics).

Video 2

Supplementary Video 2 (MPEG-4) - Animation of AFM of a layered sheet of the 2D molecularly woven fabric. Video credit: Stuart Jantzen (Biocinematics).

Video 3

Supplementary Video 3 (MPEG-4) - Animation of the fracturing and delamination process of a layered sheet of the 2D molecularly woven fabric on a polyester support under strain. Video credit: Stuart Jantzen (Biocinematics).

Video 4

Supplementary Video 4 (MPEG-4) - Animation of Young’s modulus determination by AFM on the 2D molecularly woven fabric and the corresponding unwoven linear polymer. Video credit: Stuart Jantzen (Biocinematics).

Video 5

Supplementary Video 5 (MPEG-4) - Animation of the ion permeability studies on PVDF-supported membranes formed from (i) the 2D molecularly woven fabric and (ii) the corresponding unwoven linear polymer. Video credit: Stuart Jantzen (Biocinematics).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

August, D.P., Dryfe, R.A.W., Haigh, S.J. et al. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 588, 429–435 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing