Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery

Abstract

Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: General approach to radioligand synthesis.
Fig. 2: Scope of high-molar-activity tritiation.
Fig. 3: Scope of carbon-11 radiolabelling.
Fig. 4: Synthesis of various carbon and hydrogen isotopologues.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    Article  CAS  Google Scholar 

  2. Patel, S. & Gibson, R. In vivo site-directed radiotracers: a mini-review. Nucl. Med. Biol. 35, 805–815 (2008).

    Article  CAS  Google Scholar 

  3. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).

    Article  CAS  Google Scholar 

  4. Miller, P. W., Long, N. J., Vilar, R. & Gee, A. D. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem. Int. Ed. 47, 8998–9033 (2008).

    Article  CAS  Google Scholar 

  5. Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).

    Article  CAS  Google Scholar 

  6. Bar-Shalom, R., Valdivia, A. Y. & Blaufox, M. D. PET imaging in oncology. Semin. Nucl. Med. 30, 150–185 (2000).

    Article  CAS  Google Scholar 

  7. Tiepolt, S. et al. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm. Chem. 4, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suridjan, I., Comley, R. A. & Rabiner, E. A. The application of positron emission tomography (PET) imaging in CNS drug development. Brain Imaging Behav. 13, 354–365 (2019).

    Article  Google Scholar 

  9. Piel, M., Vernaleken, I. & Rösch, F. Positron emission tomography in CNS drug discovery and drug monitoring. J. Med. Chem. 57, 9232–9258 (2014).

    Article  CAS  Google Scholar 

  10. Boscutti, G., Huiban, M. & Passchier, J. Use of carbon-11 labelled tool compounds in support of drug development. Drug Discov. Today Technol. 25, 3–10 (2017).

    Article  Google Scholar 

  11. Hargreaves, R. Imaging substance P receptors (NK1) in the living human brain using positron emission tomography. J. Clin. Psychiat. 63, 18–24 (2002).

    CAS  Google Scholar 

  12. Deng, X. et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed. 58, 2580–2605 (2019).

    Article  CAS  Google Scholar 

  13. Dahl, K., Halldin, C. & Schou, M. New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin. Transl. Imaging 5, 275–289 (2017).

    Article  Google Scholar 

  14. Zarate, C., Yang, H., Bezdek, M. J., Hesk, D. & Chirik, P. J. Ni(i)–X complexes bearing a bulky α-diimine ligand: synthesis, structure, and superior catalytic performance in the hydrogen isotope exchange in pharmaceuticals. J. Am. Chem. Soc. 141, 5034–5044 (2019).

    Article  CAS  Google Scholar 

  15. Voges, R., Heys, J. R. & Moenius, T. Preparation of tritium-labeled compounds by chemical synthesis. In Preparation of Compounds Labeled with Tritium and Carbon‐14 109–209 (John Wiley & Sons, 2009).

  16. Wuest, F., Berndt, M. & Kniess, T. Carbon-11 labeling chemistry based upon [11C]methyl iodide. In PET Chemistry (eds Schubiger, P. A., Lehmann, L. & Friebe, M.) 183–213 (Springer, 2007).

  17. McGrath, N. A., Brichacek, M. & Njardarson, J. T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Educ. 87, 1348–1349 (2010).

    Article  CAS  Google Scholar 

  18. Voges, R., Heys, J. R. & Moenius, T. Introduction. In Preparation of Compounds Labeled with Tritium and Carbon‐14 1–23 (John Wiley & Sons, 2009).

  19. Sandell, J. et al. Synthesis, radiolabeling and preliminary biological evaluation of radiolabeled 5-methyl-6-nitroquipazine, a potential radioligand for the serotonin transporter. Bioorg. Med. Chem. Lett. 12, 3611–3613 (2002).

    Article  CAS  Google Scholar 

  20. Halldin, C. et al. Development of a central nicotinic acetylcholine receptor radioligand, 5-methyl-A-85380, and postmortem autoradiography in human brain. J. Labelled Comp. Radiopharm. 44, S251–S253 (2001).

    Article  Google Scholar 

  21. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  22. Zhang, P. & Le, C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  Google Scholar 

  23. Smith, R. T. et al. Metallaphotoredox-catalyzed cross-electrophile Csp3–Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 140, 17433–17438 (2018).

    Article  CAS  Google Scholar 

  24. Li, P. & Olszewski, J. D. Radiosynthesis of [3H]-ABP688 using [3H]-methyl nosylate: a non-volatile alternative methylating agent. J. Labelled Comp. Radiopharm. 52, 512–513 (2009).

    Article  CAS  Google Scholar 

  25. Le, C. et al. A general small-scale reactor to enable standardization and acceleration of photocatalytic reactions. ACS Cent. Sci. 3, 647–653 (2017).

    Article  CAS  Google Scholar 

  26. Smith, J. R. L. & Masheder, D. Amine oxidation. Part IX. The electrochemical oxidation of some tertiary amines: the effect of structure on reactivity. J. Chem. Soc. Perkin Trans. 2, 47–51 (1976).

    Article  CAS  Google Scholar 

  27. Koyama, H. et al. Synthesis of PET probe O6-[(3-[11C]methyl)benzyl]guanine by Pd0-mediated rapid C-[11C]methylation toward imaging DNA repair protein O6-methylguanine-DNA methyltransferase in glioblastoma. Bioorg. Med. Chem. Lett. 27, 1892–1896 (2017).

    Article  CAS  Google Scholar 

  28. Nabulsi, N. B. et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J. Nucl. Med. 57, 777–784 (2016).

    Article  CAS  Google Scholar 

  29. Shimoda, Y. et al. Synthesis and evaluation of novel radioligands based on 3-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]benzonitrile for positron emission tomography imaging of metabotropic glutamate receptor subtype 5. J. Med. Chem. 59, 3980–3990 (2016).

    Article  CAS  Google Scholar 

  30. Hostetler, E. D., Fallis, S., McCarthy, T. J., Welch, M. J. & Katzenellenbogen, J. A. Improved methods for the synthesis of [ω-11C]palmitic acid. J. Org. Chem. 63, 1348–1351 (1998).

    Article  CAS  Google Scholar 

  31. Shoup, T. M. et al. Synthesis of the dopamine D2/D3 receptor agonist (+)-PHNO via supercritical fluid chromatography: preliminary PET imaging study with [3-11C]-(+)PHNO. Tetrahedr. Lett. 55, 682–685 (2014).

    Article  CAS  Google Scholar 

  32. Andries, J., Lemoine, L., Le Bars, D., Zimmer, L. & Billard, T. Synthesis and biological evaluation of potential 5-HT7 receptor PET radiotracers. Eur. J. Med. Chem. 46, 3455–3461 (2011).

    Article  CAS  Google Scholar 

  33. Mintun, M. A. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67, 446–452 (2006).

    Article  CAS  Google Scholar 

  34. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Quality Guidelines https://www.ich.org/page/quality-guidelines.

  35. Isin, E. M., Elmore, C. S., Nilsson, G. N., Thompson, R. A. & Weidolf, L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem. Res. Toxicol. 25, 532–542 (2012).

    Article  CAS  Google Scholar 

  36. Gant, T. G. Using deuterium in drug discovery: leaving the label in the drug. J. Med. Chem. 57, 3595–3611 (2014).

    Article  CAS  Google Scholar 

  37. Atzrodt, J., Derdau, V., Fey, T. & Zimmermann, J. The renaissance of H/D exchange. Angew. Chem. Int. Ed. 46, 7744–7765 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the NIH (under award number R35GM134897-01) and the Princeton Catalysis Initiative. We thank L. Wilson (Lotus Separations) and H. Wang for compound purification; I. Mergelsberg, M. Reibarkh and Y. N. J. Chen for discussions; A. Chaudhary and Z. Zhu (Siemens) for high-activity [11C]UCB-J radiotracer synthesis; and C. Liu for assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.Z.M., S.R., T.J.A.G., D.H., E.D.H., I.W.D. and D.W.C.M. conceived the work. R.W.P., P.Z.M. and S.R. conducted initial optimization. R.W.P., K.T.S. and S.R. synthesized organobromide precursors. R.W.P. and K.T.S. performed and isolated labelling experiments. R.W.P., K.T.S., S.R. and D.H. developed purification conditions. T.J.A.G., S.V. and E.D.H. provided insight into experimental design. L.G. conducted the non-human primate PET imaging study and T.G.L. performed data analysis. A.S. configured and performed the fully automated radiosynthesis and H.S.L. performed data analysis. R.W.P., K.T.S., T.J.A.G. and D.W.C.M. prepared the manuscript with input from all co-authors.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Yu-Shin Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary Text, Supplementary Figures S1–S17, NMR Spectra, and Supplementary References.

Reporting Summary

Supplementary Video 1

: Photoreactor Initiation for Automated Radiosynthesis A brief video demonstrating how the integrated photoreactor is switched on with a Bluetooth-enabled, SwitchBot remote control push button for application to automated carbon-11 radiolabeling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pipal, R.W., Stout, K.T., Musacchio, P.Z. et al. Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. Nature 589, 542–547 (2021). https://doi.org/10.1038/s41586-020-3015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-3015-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing