Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Half-minute-scale atomic coherence and high relative stability in a tweezer clock

Abstract

The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is fundamental for many studies in quantum metrology1, simulation2 and information3. However, the simultaneous realization of these properties remains a central challenge in quantum science across atomic and condensed-matter systems2,4,5,6,7. Here we leverage the favourable properties of tweezer-trapped alkaline-earth (strontium-88) atoms8,9,10, and introduce a hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout and preservation of atomic coherence. With this approach, we achieve trapping and optical-clock excited-state lifetimes exceeding 40 seconds in ensembles of approximately 150 atoms. This leads to half-minute-scale atomic coherence on an optical-clock transition, corresponding to quality factors well in excess of 1016. These coherence times and atom numbers reduce the effect of quantum projection noise to a level that is comparable with that of leading atomic systems, which use optical lattices to interrogate many thousands of atoms in parallel11,12. The result is a relative fractional frequency stability of 5.2(3) × 10−17τ−1/2 (where τ is the averaging time in seconds) for synchronous clock comparisons between sub-ensembles within the tweezer array. When further combined with the microscopic control and readout that are available in this system, these results pave the way towards long-lived engineered entanglement on an optical-clock transition13 in tailored atom arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 3D ground-state cooled strontium atoms in a 320-site magic-wavelength tweezer array.
Fig. 2: Minute-scale atomic lifetime and ensemble coherence studies.
Fig. 3: Resolving millihertz shifts of an optical transition.
Fig. 4: Microscopic studies of atomic coherence.

Similar content being viewed by others

Data availability

The experimental data presented in this manuscript are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The code used for analysis and simulation in this work is available from the corresponding author upon reasonable request.

References

  1. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  CAS  Google Scholar 

  2. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    ADS  Google Scholar 

  3. Preskill, J. Quantum computing and the entanglement frontier. Preprint at https://arxiv.org/abs/1203.5813 (2012).

  4. Saffman, M., Walker, T. G. & Molmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    ADS  CAS  Google Scholar 

  5. Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS  Google Scholar 

  6. Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    ADS  CAS  PubMed  Google Scholar 

  7. Hutson, R. B., Goban, A., Marti, G. E. & Ye, J. Engineering quantum states of matter for atomic clocks in shallow optical lattices. Phys. Rev. Lett. 123, 123401 (2019).

    ADS  CAS  PubMed  Google Scholar 

  8. Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    CAS  Google Scholar 

  9. Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).

    Google Scholar 

  10. Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).

    ADS  CAS  PubMed  Google Scholar 

  11. Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    ADS  CAS  PubMed  Google Scholar 

  12. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    ADS  CAS  Google Scholar 

  13. Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).

    ADS  CAS  PubMed  Google Scholar 

  14. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    CAS  Google Scholar 

  15. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  CAS  PubMed  Google Scholar 

  16. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS  CAS  PubMed  Google Scholar 

  17. Kumar, A., Wu, T.-Y., Giraldo, F. & Weiss, D. S. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon. Nature 561, 83–87 (2018).

    ADS  CAS  PubMed  Google Scholar 

  18. Brown, M. O., Thiele, T., Kiehl, C., Hsu, T.-W. & Regal, C. A. Gray-molasses optical-tweezer loading: controlling collisions for scaling atom-array assembly. Phys. Rev. X 9, 011057 (2019).

    CAS  Google Scholar 

  19. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS  CAS  PubMed  Google Scholar 

  20. Graham, T. M. et al. Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett. 123, 230501 (2019).

    ADS  CAS  PubMed  Google Scholar 

  21. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  22. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  CAS  PubMed  Google Scholar 

  23. de Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).

    ADS  MathSciNet  PubMed  MATH  Google Scholar 

  24. Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms Nat. Phys. 16, 857–861 (2020).

    CAS  Google Scholar 

  25. Wilson, J. et al. Trapped arrays of alkaline earth Rydberg atoms in optical tweezers. Preprint at https://arxiv.org/abs/1912.08754 (2019).

  26. Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    ADS  CAS  PubMed  Google Scholar 

  27. Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    ADS  CAS  PubMed  Google Scholar 

  28. Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015).

    ADS  CAS  Google Scholar 

  29. Liu, L. R. et al. Molecular assembly of ground-state cooled single atoms. Phys. Rev. X 9, 021039 (2019).

    CAS  Google Scholar 

  30. Dörscher, S. et al. Lattice-induced photon scattering in an optical lattice clock. Phys. Rev. A 97, 063419 (2018).

    ADS  Google Scholar 

  31. Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photon. 5, 288–292 (2011).

    ADS  CAS  Google Scholar 

  32. Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    ADS  CAS  PubMed  Google Scholar 

  33. Foster, G. T., Fixler, J. B., McGuirk, J. M. & Kasevich, M. A. Method of phase extraction between coupled atom interferometers using ellipse-specific fitting. Opt. Lett. 27, 951 (2002).

    ADS  CAS  PubMed  Google Scholar 

  34. Shi, C. et al. Polarizabilities of the 87Sr clock transition. Phys. Rev. A 92, 012516 (2015).

    ADS  Google Scholar 

  35. Chwalla, M. et al. Precision spectroscopy with two correlated atoms. Appl. Phys. B 89, 483–488 (2007).

    ADS  CAS  Google Scholar 

  36. Chou, C. W., Hume, D. B., Thorpe, M. J., Wineland, D. J. & Rosenband, T. Quantum coherence between two atoms beyond Q = 1015. Phys. Rev. Lett. 106, 160801 (2011).

    ADS  CAS  PubMed  Google Scholar 

  37. Hume, D. B. & Leibrandt, D. R. Probing beyond the laser coherence time in optical clock comparisons. Phys. Rev. A 93, 032138 (2016).

    ADS  Google Scholar 

  38. Tan, T. R. et al. Suppressing inhomogeneous broadening in a lutetium multi-ion optical clock. Phys. Rev. Lett. 123, 063201 (2019).

    ADS  CAS  PubMed  Google Scholar 

  39. Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  40. Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).

    ADS  PubMed  Google Scholar 

  41. Pedrozo-Peñfiel, E. et al. Entanglement-enhanced optical atomic clock. Preprint at https://arxiv.org/abs/2006.07501 (2020).

  42. Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).

    ADS  CAS  PubMed  Google Scholar 

  43. Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).

    ADS  CAS  PubMed  Google Scholar 

  44. Kessler, E. M. et al. Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett. 112, 190403 (2014).

    ADS  CAS  PubMed  Google Scholar 

  45. Zhang, G. & Song, Z. Topological characterization of extended quantum Ising models. Phys. Rev. Lett. 115, 177204 (2015).

    ADS  CAS  PubMed  Google Scholar 

  46. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    ADS  PubMed  Google Scholar 

  47. Titum, P., Iosue, J. T., Garrison, J. R., Gorshkov, A. V. & Gong, Z.-X. Probing ground-state phase transitions through quench dynamics. Phys. Rev. Lett. 123, 115701 (2019).

    ADS  CAS  PubMed  Google Scholar 

  48. Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009).

    CAS  Google Scholar 

  49. Monroe, C. et al. Resolved-sideband raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  50. Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012).

    Google Scholar 

  51. Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletić, V. & Lukin, M. D. Coherence and Raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett. 110, 133001 (2013).

    ADS  CAS  PubMed  Google Scholar 

  52. Taichenachev, A. V. et al. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Phys. Rev. Lett. 96, 083001 (2006).

    ADS  CAS  PubMed  Google Scholar 

  53. Bali, S., O’Hara, K. M., Gehm, M. E., Granade, S. R. & Thomas, J. E. Quantum-diffractive background gas collisions in atom-trap heating and loss. Phys. Rev. A 60, R29–R32 (1999).

    ADS  CAS  Google Scholar 

  54. Van Dongen, J. et al. Trap-depth determination from residual gas collisions. Phys. Rev. A 84, 022708 (2011).

    ADS  Google Scholar 

  55. Mitroy, J. & Zhang, J. Y. Dispersion and polarization interactions of the strontium atom. Mol. Phys. 108, 1999–2006 (2010).

    ADS  CAS  Google Scholar 

  56. Gibble, K. Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions. Phys. Rev. Lett. 110, 180802 (2013).

    ADS  PubMed  Google Scholar 

  57. Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    ADS  CAS  Google Scholar 

  58. Savard, T. A., O’Hara, K. M. & Thomas, J. E. Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A 56, R1095–R1098 (1997).

    ADS  CAS  Google Scholar 

  59. Gehm, M. E., O’Hara, K. M., Savard, T. A. & Thomas, J. E. Dynamics of noise-induced heating in atom traps. Phys. Rev. A 58, 3914–3921 (1998).

    ADS  CAS  Google Scholar 

  60. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    ADS  CAS  PubMed  Google Scholar 

  61. Ovsiannikov, V. D., Pal’chikov, V. G., Taichenachev, A. V., Yudin, V. I. & Katori, H. Multipole, nonlinear, and anharmonic uncertainties of clocks of Sr atoms in an optical lattice. Phys. Rev. A 88, 013405 (2013).

    ADS  Google Scholar 

  62. Safronova, M. S., Zuhrianda, Z., Safronova, U. I. & Clark, C. W. Extracting transition rates from zero-polarizability spectroscopy. Phys. Rev. A 92, 040501 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with R. B. Hutson, J. K. Thompson, M. Foss-Feig, S. Kolkowitz and J. Simon. We further acknowledge F. Vietmeyer and M. O. Brown for assistance in the design and development of our FPGA-based tweezer control system. This work was supported by ARO, AFOSR, DARPA, the National Science Foundation Physics Frontier Center at JILA (1734006) and NIST. M.A.N., E.O. and N.S. acknowledge support from the NRC research associateship programme.

Author information

Authors and Affiliations

Authors

Contributions

A.W.Y., W.J.E., M.A.N., N.S. and A.M.K. built and operated the tweezer apparatus, and the silicon-crystal-stabilized clock laser was operated by W.R.M., D.K., E.O. and J.Y. All authors contributed to the data analysis and the development of the manuscript.

Corresponding author

Correspondence to Adam M. Kaufman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Ahmed Omran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Sideband cooling and inhomogeneous broadening.

The trap frequency and cooling performance in the radial direction is uniform across the entire array, as further confirmed by spectra taken along a radial axis orthogonal to that of the data presented in Fig. 1d (left). However, in a reduced 6 × 6 region at the centre of the array (shown in the far-right inset), the axial cooling performance is vastly improved (right), with an average phonon occupation of \(\bar{n}={0.00}_{-0.00}^{+0.06}\) (\(\bar{n}={0.06}_{-0.06}^{+0.10}\)) before (after) the handoff. This is due to the comparable extent of the lattice beams to the tweezer array (the light-green contour in the far-right inset shows the region over which the lattice intensity stays within 90% of its maximal value). Each data point corresponds to 20 repetitions of the experiment.

Source data

Extended Data Fig. 2 Lattice alignment.

a, b, Spatial phase of the standing-wave lattice at each tweezer, inferred from measurements at 15 values of the lattice phase averaged over 100 trials (see Supplementary Information) with an intentional tilt (a, left) and properly aligned (a, right). These show that it is possible flatten the lattice relative to the entire tweezer array to within 1/10 of a lattice period (b). This allows for high-fidelity sideband cooling in all axes. ‘Cts’, counts; ‘arb.’, arbitrary units.

Source data

Extended Data Fig. 3 Timing of experimental sequence.

a, The green and black curves track the depths of the 515-nm and 813-nm tweezers, respectively. The coloured regions above and below the graph categorize each step of the experiment (described in more detail in Methods). We find that maintaining the 813-nm tweezers at a depth greater than 20Er during the ramp down improves the fidelity of the handoff procedure. Not shown is the time required to load atoms into the 515-nm tweezers from the magneto-optical traps used for initial trapping and cooling, which takes roughly 120 ms. LAC, light-assisted collisions. b, Zoomed-in view of our cooling procedure, showing the depth of the axial lattice. We perform two rounds of sideband cooling, indicated by the two regions shaded in grey. The first, done before ramping up the axial lattice, does not cool axial motion to the ground state. Instead, it is important for reducing the size of the atomic wave packet to ensure loading of a single lattice fringe.

Extended Data Fig. 4 Measuring atom–laser coherence.

Fitting measured Ramsey fringes with fringes of a fixed frequency provides a conservative estimate of atom–laser coherence. Callouts share x-axis units with the main plot, and show the fitted Ramsey data (the same data as used in Fig. 2b). ‘pop.’, population.

Source data

Extended Data Table 1 Relevant optical trapping parameters
Extended Data Table 2 Rates contributing to the predicted Ramsey lifetime

Supplementary information

Supplementary Information

This file contains Supplementary Text and Supplementary Figures S1–S5.

Peer Review File

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, A.W., Eckner, W.J., Milner, W.R. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020). https://doi.org/10.1038/s41586-020-3009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-3009-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing