Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Entanglement on an optical atomic-clock transition


State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, which is measured in terms of the quantum phase accumulated over a given time interval1,2,3,4. The stability of optical-lattice clocks (OLCs) is limited both by the interrupted interrogation of the atomic system by the local-oscillator laser (Dick noise5) and by the standard quantum limit (SQL) that arises from the quantum noise associated with discrete measurement outcomes. Although schemes for removing the Dick noise have been recently proposed and implemented4,6,7,8, performance beyond the SQL by engineering quantum correlations (entanglement) between atoms9,10,11,12,13,14,15,16,17,18,19,20 has been demonstrated only in proof-of-principle experiments with microwave clocks of limited stability. The generation of entanglement on an optical-clock transition and operation of an OLC beyond the SQL represent important goals in quantum metrology, but have not yet been demonstrated experimentally16. Here we report the creation of a many-atom entangled state on an OLC transition, and use it to demonstrate a Ramsey sequence with an Allan deviation below the SQL after subtraction of the local-oscillator noise. We achieve a metrological gain of \(4.{4}_{-0.4}^{+0.6}\) decibels over the SQL by using an ensemble consisting of a few hundred ytterbium-171 atoms, corresponding to a reduction of the averaging time by a factor of 2.8 ± 0.3. Our results are currently limited by the phase noise of the local oscillator and Dick noise, but demonstrate the possible performance improvement in state-of-the-art OLCs1,2,3,4 through the use of entanglement. This will enable further advances in timekeeping precision and accuracy, with many scientific and technological applications, including precision tests of the fundamental laws of physics21,22,23, geodesy24,25,26 and gravitational-wave detection27.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Setup and squeezed-clock sequence.
Fig. 2: Squeezed state tomography.
Fig. 3: Spin noise and Wineland parameter of the clock transition as a function of time.
Fig. 4: Stability improvement with the squeezed clock.

Data availability

All data obtained in the study are available from the corresponding author upon reasonable request.


  1. 1.

    Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  CAS  Google Scholar 

  2. 2.

    Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015).

    ADS  CAS  Google Scholar 

  3. 3.

    Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    ADS  CAS  Google Scholar 

  4. 4.

    Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photon. 11, 48–52 (2017).

    ADS  CAS  Google Scholar 

  5. 5.

    Dick, G. J. Local Oscillator Induced Instabilities in Trapped Ion Frequency Standards. Report ADA502386 (California Institute of Technology, Pasadena Jet Propulsion Lab, 1987);

  6. 6.

    Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    ADS  CAS  PubMed  Google Scholar 

  7. 7.

    Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the dick limit. Nat. Photon. 5, 288–292 (2011).

    ADS  CAS  Google Scholar 

  8. 8.

    Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    ADS  CAS  PubMed  Google Scholar 

  9. 9.

    Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    ADS  CAS  PubMed  Google Scholar 

  10. 10.

    Takano, T., Fuyama, M., Namiki, R. & Takahashi, Y. Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. Phys. Rev. Lett. 102, 033601 (2009).

    ADS  CAS  PubMed  Google Scholar 

  11. 11.

    Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    ADS  CAS  PubMed  Google Scholar 

  13. 13.

    Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback. Phys. Rev. A 81, 021804 (2010).

    ADS  Google Scholar 

  14. 14.

    Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    ADS  PubMed  Google Scholar 

  15. 15.

    Kruse, I. et al. Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett. 117, 143004 (2016).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS  MathSciNet  Google Scholar 

  17. 17.

    Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    ADS  PubMed  Google Scholar 

  18. 18.

    Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    ADS  CAS  PubMed  MATH  Google Scholar 

  19. 19.

    Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  20. 20.

    Braverman, B. et al. Near-unitary spin squeezing in Yb 171. Phys. Rev. Lett. 122, 223203 (2019).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  23. 23.

    Safronova, M. S. The search for variation of fundamental constants with clocks. Ann. Phys. 531, 1800364 (2019).

    Google Scholar 

  24. 24.

    Lisdat, C. et al. A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    CAS  Google Scholar 

  26. 26.

    Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).

    ADS  CAS  Google Scholar 

  27. 27.

    Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    ADS  Google Scholar 

  28. 28.

    Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    ADS  CAS  PubMed  Google Scholar 

  30. 30.

    Hamley, C. D., Gerving, C., Hoang, T., Bookjans, E. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012).

    CAS  Google Scholar 

  31. 31.

    Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Orientation-dependent entanglement lifetime in a squeezed atomic clock. Phys. Rev. Lett. 104, 250801 (2010).

    ADS  PubMed  Google Scholar 

  32. 32.

    Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Braverman, B., Kawasaki, A. & Vuletić, V. Impact of non-unitary spin squeezing on atomic clock performance. New J. Phys. 20, 103019 (2018).

    ADS  Google Scholar 

  34. 34.

    Matei, D. G. et al. 1.5μm lasers with sub-10 MHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    ADS  CAS  PubMed  Google Scholar 

  35. 35.

    Hu, L., Poli, N., Salvi, L. & Tino, G. M. Atom interferometry with the Sr optical clock transition. Phys. Rev. Lett. 119, 263601 (2017).

    ADS  PubMed  Google Scholar 

  36. 36.

    Pospelov, M. et al. Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013).

    ADS  CAS  PubMed  Google Scholar 

  37. 37.

    Riehle, F. Optical clock networks. Nat. Photon. 11, 25–31 (2017).

    ADS  CAS  Google Scholar 

  38. 38.

    Al-Masoudi, A., Dörscher, S., Häfner, S., Sterr, U. & Lisdat, C. Noise and instability of an optical lattice clock. Phys. Rev. A 92, 063814 (2015).

    ADS  Google Scholar 

  39. 39.

    Kawasaki, A. et al. Geometrically asymmetric optical cavity for strong atom-photon coupling. Phys. Rev. A 99, 013437 (2019).

    ADS  CAS  Google Scholar 

  40. 40.

    Blatt, S. et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock. Phys. Rev. A 80, 052703 (2009).

    ADS  Google Scholar 

  41. 41.

    Vallet, G. et al. A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime. New J. Phys. 19, 083002 (2017).

    ADS  MathSciNet  Google Scholar 

  42. 42.

    Yamoah, M. et al. Robust kHz-linewidth distributed Bragg reflector laser with optoelectronic feedback. Opt. Express 27, 37714–37720 (2019).

    ADS  CAS  PubMed  Google Scholar 

  43. 43.

    Zhang, W. et al. Reduction of residual amplitude modulation to 1×10−6 for frequency modulation and laser stabilization. Opt. Lett. 39, 1980–1983 (2014).

    ADS  CAS  PubMed  Google Scholar 

  44. 44.

    Śliwczyński, Ł., Krehlik, P., Czubla, A., Buczek, Ł. & Lipiński, M. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km. Metrologia 50, 133 (2013).

    ADS  Google Scholar 

  45. 45.

    Lee, W. et al. Ultrastable laser system using room-temperature optical cavity with 4.8×10−17 thermal noise limit. In 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum 1–2 (IEEE, 2019).

Download references


We thank H. Katori, W. Ketterle, A. Ludlow, M. Lukin, J. Ramette, G. Roati, A. Urvoy, Z. Vendeiro and J. Ye for discussions. This work was supported by NSF, DARPA, ONR and the NSF Center for Ultracold Atoms (CUA). S.C. and A.F.A. acknowledge support from the Swiss National Science Foundation (SNSF). B.B. acknowledges support from the National Science and Engineering Research Council of Canada.

Author information




A.K., B.B., C.S., E.P.-P., S.C., A.F.A., Z.L., E.M. and V.V. contributed to the building of the experiment. E.P.-P., S.C. and C.S. led the experimental efforts and simulations. S.C., A.F.A., C.S. and E.P.-P. contributed to the data analysis. V.V. conceived and supervised the experiment. S.C. and V.V. wrote the manuscript. All authors discussed the experiment implementation and results and contributed to the manuscript.

Corresponding author

Correspondence to Vladan Vuletić.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pedrozo-Peñafiel, E., Colombo, S., Shu, C. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing