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The coronavirus disease 2019 (COVID-19) pandemic markedly changed human
mobility patterns, necessitating epidemiological models that can capture the effects
of'these changes in mobility on the spread of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)". Here we introduce a metapopulation susceptible-
exposed-infectious-removed (SEIR) model that integrates fine-grained, dynamic
mobility networks to simulate the spread of SARS-CoV-2in ten of the largest US
metropolitan areas. Our mobility networks are derived from mobile phone data and
map the hourly movements of 98 million people from neighbourhoods (or census
block groups) to points of interest such as restaurants and religious establishments,
connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion
hourly edges. We show that by integrating these networks, arelatively simple SEIR
model can accurately fit the real case trajectory, despite substantial changes in the
behaviour of the population over time. Our model predicts that a small minority of
‘superspreader’ points of interest account for a large majority of the infections, and
that restricting the maximum occupancy at each point of interest is more effective
than uniformly reducing mobility. Our model also correctly predicts higher infection
rates among disadvantaged racial and socioeconomic groups®®solely as the result of

differences in mobility: we find that disadvantaged groups have not been able to
reduce their mobility as sharply, and that the points of interest that they visit are more
crowded and are therefore associated with higher risk. By capturing who isinfected at
whichlocations, our model supports detailed analyses that can inform more-effective
and equitable policy responses to COVID-19.

Inresponse to the COVID-19 crisis, stay-at-home orders were enacted
inmany countries to reduce contact betweenindividuals and slow the
spread of the SARS-CoV-2°. Since then, public officials have continued
to deliberate over when to reopen, which places are safe to return to
and how much activity to allow™. Answering these questions requires
epidemiological models that can capture the effects of changes in
mobility on virus spread. In particular, findings of COVID-19 super-
spreader events” ™ motivate models that canreflect the heterogeneous
risks of visiting different locations, whereas well-reported disparities
ininfection rates among different racial and socioeconomic groups®*®
require models that can explain the disproportionate effect of the virus
ondisadvantaged groups.

Toaddress these needs, we construct fine-grained dynamic mobility
networks from mobile-phone geolocation data, and use these networks
tomodel the spread of SARS-CoV-2 within10 of the largest metropoli-
tan statistical areas (hereafter referred to as metro areas) in the USA.
These networks map the hourly movements of 98 million people from
census block groups (CBGs), which are geographical units that typi-
cally contain 600-3,000 people, to specific points of interest (POIs).

AsshowninSupplementary Table1, POls are non-residential locations
that peoplevisitsuch as restaurants, grocery stores and religious estab-
lishments. Ontop of each network, we overlay ametapopulation SEIR
model that tracks the infection trajectories of each CBG as well as the
POIs at which these infections are likely to have occurred. This builds
on prior research that models disease spread using aggregate™,
historical®®**? or synthetic mobility data®>; separately, other studies
have analysed mobility data in the context of COVID-19, but without
anunderlying model of disease spread® .

Combining our epidemiological model with these mobility networks
allows us to not only accurately fit observed case counts, but also to
conduct detailed analyses that can inform more-effective and equi-
table policy responses to COVID-19. By capturing information about
individual POIs (for example, the hourly number of visitors and median
visitduration), our model can estimate the effects of specific reopening
strategies, such as only reopening certain POI categories or restrict-
ing the maximum occupancy at each POI. By modelling movement
from CBGs, our model can identify at-risk populations and correctly
predict, solely from mobility patterns, that disadvantaged racial and
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Fig.1|Model descriptionand fit.a, The mobility network captures hourly
visits fromeach CBG to each POI. The vertical lines indicate that most visits are
between nearby POIs and CBGs. Visits dropped markedly from March to April,
asindicated by the lower density of grey lines. Mobility networks in the Chicago
metro areaare shown for13:00 on two Mondays, 2 March 2020 (top) and 6 April
2020 (bottom). b, We overlaid a disease-spread model on the mobility network,
with each CBG havingits own set of SEIR compartments. New infections occur
atboth POlIs and CBGs, with the mobility network governing how
subpopulations from different CBGs interact as they visit POls. ¢, Left, to test
the out-of-sample prediction, we calibrated the model on data before 15 April
2020 (vertical black line). Even though its parameters remain fixed over time,
themodelaccurately predicts the case trajectory in the Chicago metroarea
after 15 April using the mobility data (r.m.s.e. on daily cases =406 for dates

socioeconomic groups face higher rates of infection. Our model thus
enables the analysis of urgent health disparities; we useit to highlight
two mobility-related mechanisms that drive these disparities and to
evaluate the disparate effect of reopening on disadvantaged groups.

Mobility network model

We use data from SafeGraph, acompany that aggregates anonymized
location data from mobile applications, to study mobility patterns
from1March to 2 May 2020. For each metro area, we represent the
movement of individuals between CBGs and POIs as abipartite network
with time-varying edges, in which the weight of an edge between a CBG
and POl represents the number of visitors from that CBG to that POI
duringagiven hour (Fig.1a).SafeGraphalso provides the areainsquare
feet of each POI, as well as its category in the North American indus-
try classification system (for example, fitness centre or full-service
restaurant) and median visit duration in minutes. We validated the
SafeGraph mobility databy comparing the dataset to Google mobility
data (Supplementary Fig. 1and Supplementary Tables 2, 3) and used
iterative proportional fitting® to derive POI-CBG networks from the
raw SafeGraph data. Overall, these networks comprise 5.4 billion hourly
edgesbetween 56,945 CBGs and 552,758 POls (Extended Data Table1).

We overlay aSEIR model on each mobility network™*, inwhich each
CBG maintains its own susceptible (S), exposed (£), infectious (/) and

Date Date Date

ranging from15 April to 9 May). Right, model fit was furtherimproved when we
calibrated the model on the full range of data (r.m.s.e. on daily cases =387 for
thedatesranging from15 April to 9 May). d, We fitted separate models to 10 of
thelargest US metro areas, modelling a total population of 98 million people;
here, we show fullmodelfits, asin c (right). Incand d, the blue line represents
the model predictions and the grey crosses represent the number of daily
reported cases; as the numbers of reported cases tend to have great variability,
we also show the smoothed weekly average (orange line). Shaded regions
denote the 2.5th and 97.5th percentiles across parameter sets and stochastic
realizations. Across metro areas, we sample 97 parameter sets, with 30
stochasticrealizations each (n=2,910); see Supplementary Table 6 for the
number of sets per metro area.

removed (R) states (Fig. 1b). New infections occur at both POIs and
CBGs, with the mobility network governing how subpopulations from
different CBGsinteractas they visit POls. We use the area, median visit
duration and time-varying density of infectious individuals for each
POl to determine the hourly infection rate of that POI. The model has
only three free parameters that scale: (1) transmission rates at POls, (2)
transmission rates at CBGs and (3) the initial proportion of exposed
individuals (Extended Data Table 2); all three parameters remain con-
stantover time. We calibrate aseparate model for each metro area using
the confirmed case counts from The New York Times by minimizing the
root mean square error (r.m.s.e.) to daily incident cases®. Our model
accurately fits observed daily case counts in all 10 metro areas from
8Marchto9May 2020 (Fig.1c, d). Inaddition, when calibrated on only
the case counts up to 14 April, the model predicts case counts reason-
ably wellonthe held-out time period of 15 April-9 May 2020 (Fig. 1cand
Extended Data Fig. 1a). Our key technical finding is that the dynamic
mobility network allows even our relatively simple SEIR model with
just three static parameters to accurately fit observed cases, despite
changing policies and behaviours during that period.

Mobility reduction and reopening plans

We can estimate theimpact of mobility-related policies by constructing
a hypothetical mobility network that reflects the expected effects of
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Fig.2|Assessing mobility reduction and reopening. The Chicago metro area
isused as an example; results for allmetro areas areincluded in Extended Data
Figs. 3,4, SupplementaryFigs.10,15-24 and Supplementary Tables 4,5, as
indicated. a, Counterfactual simulations (left) of past reductions in mobility
illustrate that the magnitude of the reduction (middle) was at least as
importantasits timing (right) (Supplementary Tables 4, 5). b, The model
predicts that mostinfectionsat POIs occur atasmall fraction of superspreader
POIs (Supplementary Fig. 10). ¢, Left, the cumulative number of predicted
infections after one month of reopeningis plotted against the fraction of visits
lost by partial instead of full reopening (Extended Data Fig. 3); the annotations
within the plot show the fraction of maximum occupancy thatis used as the cap
andthe horizontalred lineindicates the cumulative number of predicted
infections at the point of reopening (on1May 2020). Compared to full
reopening, capping at 20% of the maximum occupancy in Chicago reduces the
number of new infections by more than 80%, while only losing 42% of overall

each policy, and running our SEIR model forward with this hypotheti-
cal network. Using this approach, we assess a wide range of mobility
reduction and reopening strategies.

The magnitude of mobility reductionis at least asimportant as
its timing

Mobility in the USA dropped sharply in March 2020: for example, overall
POl visitsinthe Chicago metro area fell by 54.7% between the first week
of Marchand the first week of April 2020. We constructed counterfac-
tual mobility networks by scaling the magnitude of mobility reduction
down and by shifting the timeline earlier and later, and applied our
model to the counterfactual networks to simulate the resulting infec-
tion trajectories. Across metro areas, we found that the magnitude of
mobility reduction was at least as important as its timing (Fig. 2a and
Supplementary Tables 4, 5): for example, if the mobility reductioninthe
Chicago metro area had been only a quarter of the size, the predicted
number of infections would have increased by 3.3x (95% confidence
interval, 2.8-3.8x), compared with a1.5x (95% confidence interval,
1.4-1.6x) increase had people begun reducing their mobility one full
week later. Furthermore, if no mobility reduction had occurred at all,
the predicted number of infections in the Chicago metro area would
haveincreased by 6.2x (95% confidenceinterval, 5.2-7.1x). Our results
areinaccordance with previous findings that mobility reductions can
markedly reduce infections!'®1>%34,
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visits. Right, compared to uniformly reducing visits, the reduced maximum
occupancy strategy always resultsinasmaller predicted increaseininfections
for thesame number of visits (Extended DataFig. 4). The horizontal grey line at
0%indicates when the two strategies resultinan equal number of infections,
and we observe that the curve falls well below this baseline. The y axis plots the
relative difference between the predicted number of newinfectionsunder the
reduced occupancy strategy compared to auniformreduction. d, Reopening
full-servicerestaurants has the largest predicted impact oninfections, due to
thelarge number of restaurants as well as their high visit densitiesand long
dwell times (Supplementary Figs.15-24). Colours are used to distinguish the
different POl categories, but do not have any additional meaning. All resultsin
thisfigure are aggregated across 4 parameter sets and 30 stochastic
realizations (n=120).Shaded regionsina-cdenote the 2.5th to 97.5th
percentiles; boxesinddenote theinterquartile range and data points outside
thisrange are shown asindividual dots.

A minority of POIs account for the majority of the predicted
infections

We nextinvestigated whether it matters how we reduce mobility—that
is, towhich POIs. We computed the number of infections that occurred
ateach POl in our simulations from 1 March to 2 May 2020, and found
that the majority of the predicted infections occurred atasmall fraction
of superspreader POIs; for example, in the Chicago metro area, 10%
of POls accounted for 85% (95% confidence interval, 83-87%) of the
predicted infections at the POIs (Fig. 2b and Supplementary Fig. 10).
Certain categories of POIs also contributed far more to infections (for
example, full-service restaurants and hotels), although our model
predicted time-dependent variation in how much each category con-
tributed (Extended Data Fig. 2). For example, restaurants and fitness
centres contributed less to the predicted number of infections over
time, probably because of lockdown ordersto close these POIs, whereas
grocery stores remained steady or even grew in their contribution,
whichisinagreement with their status as essential businesses.

Reopening with areduced maximum occupancy

Ifaminority of POls produce the majority of infections, then reopening
strategies that specifically target high-risk POls should be especially
effective. To test one such strategy, we simulated reopening on1May,
and modelled the effects of reducing the maximum occupancy inwhich
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Fig.3|Mobility patterns giverise toinfectiondisparities. a, Inevery metro
area,our model predicts that peopleinlower-income CBGs are likelier tobe
infected. b, Peoplein non-white CBGs area are also likelier tobe infected,
although results are more variable across metro areas. For c-f, the Chicago
metroareais used asanexample, butreferences toresults for allmetro areas
areprovided for each panel. ¢, The overall predicted disparity isdriven by afew
POl categories such as full-service restaurants (Supplementary Fig. 2).d, One
reason for the predicted disparities is that higher-income CBGs were able to
reduce their mobility levels below those of lower-income CBGs (Extended Data
Fig.6).e, Within each POl category, people from lower-income CBGs tend to
visit POIs that have higher predicted transmission rates (Extended Data

Table 3). Thesize of each dot represents the average number of visits per capita
made to the category. The top 10 out of 20 categories with the most visits are

the numbers of hourly visits to each POl returned to their ‘normal’
levels from the first week of March but were capped if they exceeded
afraction of the maximum occupancy of that POI*. Full reopening
without reducing the maximum occupancy produced a spike in the
predicted number ofinfections: in the Chicago metro area, our models
projected that an additional 32% (95% confidence interval, 25-35%) of
the population would beinfected by the end of May (Fig.2c). However,
reducing the maximum occupancy substantially reduced the risk with-
outsharply reducing overall mobility: capping at 20% of the maximum
occupancy in the Chicago metro area reduced the predicted number
of new infections by more than 80% but only lost 42% of overall visits,
and we observed similar trends across other metro areas (Extended
Data Fig. 3). This result highlights the nonlinearity of the predicted
number of infections as a function of the number of visits: one can
achieve adisproportionately large reductionininfections with asmall
reductioninvisits. Furthermore, in comparison to a different reopen-
ing strategy, in which the number of visits to each POl was uniformly
reduced from their levels in early March, reducing the maximum
occupancy always resulted in fewer predicted infections for the same
number of total visits (Fig. 2c and Extended Data Fig. 4). Thisis because
reducing the maximum occupancies takes advantage of the
time-varying visit density within each POI, disproportionately reduc-
ing visits to the POl during the high-density periods with the highest
risk, but leaving visit counts unchanged during periods with lower risks.
These results support previous findings that precise interventions,

(compared to full reopening)

labelled, covering 0.48-2.88 visits per capita (hardware stores—full-service
restaurants). f,Reopening (at different levels of reduced maximum occupancy)
leads to more predicted infectionsinlower-income CBGs thanin the overall
population (Extended DataFig. 3). In c-f, purple denotes lower-income CBGs,
yellow denotes higher-income CBGs and blue represents the overall
population. Aside from d and e, which were directly extracted from mobility
data, all resultsin this figure represent predictions aggregated over model
realizations. Across metro areas, we sample 97 parameter sets, with 30
stochasticrealizations each (n=2,910); see Supplementary Table 6 for the
number of sets per metro area. Shaded regions in cand fdenote the 2.5th-
97.5th percentiles; boxesin (a, b) denote the interquartile range; data points
outside therange are shown asindividual dots.

such as reducing the maximum occupancy, may be more effective than
less targeted measures, while incurring substantially lower economic
costs®,

Relative risk of reopening different categories of POIs

Because we found that certain POl categories contributed far more to
predictedinfectionsin March (Extended DataFig. 2), we also expected
that reopening some POI categories would be riskier than reopening
others. To assess this, we simulated reopening each category in turn
on1May2020 (by returning its mobility patterns to early Marchlevels,
asabove), while keeping all other POls at their reduced mobility levels
fromthe end of April. We found large variationin predicted reopening
risks: on average across metro areas, full-service restaurants, gyms,
hotels, cafes, religious organizations and limited-service restaurants
producedthelargest predicted increases ininfections when reopened
(Extended Data Fig. 5d). Reopening full-service restaurants was asso-
ciated with a particularly highrisk:in the Chicago metro area, we pre-
dicted anadditional 595,805 (95% confidenceinterval, 433,735-685,959)
infections by the end of May, more than triple that of the POl category
withthe next highest risk (Fig. 2d). These risks are summed over all POls
inthe category, but therelative risks after normalizing by the number
of POIs were broadly similar (Extended DataFig. 5c). These categories
were predicted to be have a higher risk because, in the mobility data,
their POIs tended to have higher visit densities and/or visitors stayed
there longer (Supplementary Figs. 15-24).
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Demographic disparities ininfections

We characterize the differential spread of SARS-CoV-2 along demo-
graphic lines by using US census data to annotate each CBG with its
racial composition and median income, then tracking predicted
infection rates in CBGs with different demographic compositions:
for example, within each metro area, comparing CBGs in the top and
bottom deciles forincome. We use this approach to study the mobility
mechanisms behind disparities and to quantify how different reopen-
ing strategies affect disadvantaged groups.

Predicting disparities from mobility data

Despite having access to only mobility data and no demographic
information, our models correctly predicted higher risks of infection
among disadvantaged racial and socioeconomic groups®®. Across all
metro areas, individuals from CBGs in the bottom decile for income
had asubstantially higher likelihood of being infected by the end of the
simulation, eventhough allindividuals began with equal likelihoods of
infection (Fig. 3a). This predicted disparity was driven primarily by a few
POl categories (for example, full-service restaurants); far greater pro-
portions of individuals from lower-income CBGs than higher-income
CBGsbecameinfectedinthese POIs (Fig. 3c and Supplementary Fig. 2).
We similarly found that CBGs with fewer white residents had higher
predictedrisks of infection, although results were more variable across
metroareas (Fig.3b).Inthe Supplementary Discussion, we confirm that
the magnitude of the disparities that our model predicts is generally
consistent with real-world disparities and further explore the large
predicted disparitiesin Philadelphia, that stem from substantial differ-
ences in the POIs that are frequented by higher- versus lower-income
CBGs. Inthe analysis below, we discuss two mechanisms that lead higher
predicted infection rates among lower-income CBGs, and we show in
Extended Data Fig. 6 and Extended Data Table 4 that similar results
hold for racial disparities as well.

Lower-income CBGs saw smaller reductions in mobility

Afirst mechanism producing disparities was that, across allmetro areas,
lower-income CBGs did not reduce their mobility as sharplyin the first
few weeks of March 2020, and these groups showed higher mobility
than higher-income CBGs for most of March-May (Fig. 3d and Extended
DataFig. 6). Forexample, in April, individuals from lower-income CBGs
inthe Chicago metro areahad 27% more POl visits per capita than those
from higher-income CBGs. Category-level differences in visit patterns
partially explained the infection disparities within each category: for
example, individuals from lower-income CBGs made substantially more
visits per capita to grocery stores than did those from higher-income
CBGs (Supplementary Fig. 3) and consequently experienced more
predicted infections for that category (Supplementary Fig. 2).

POIs visited by lower-income CBGs have higher transmission
rates

Differencesin visits per capita do not fully explain the infection dispari-
ties: for example, cafes and snack bars were visited more frequently
by higher-income CBGs in every metro area (Supplementary Fig. 3),
but our model predicted that a larger proportion of individuals from
lower-income CBGs were infected at cafes and snack bars in the major-
ity of metro areas (Supplementary Fig. 2). We found that even within
a POl category, the predicted transmission rates at POIs frequented
by individuals fom lower-income CBGs tended to be higher than the
corresponding rates for those from higher-income CBGs (Fig. 3e and
Extended Data Table 3), because POls frequented by individuals from
lower-income CBGs tended to be smaller and more crowded in the
mobility data. As a case study, we examined grocery stores in further
detail. In eight of the ten metro areas, visitors from lower-income CBGs
encountered higher predicted transmission rates at grocery stores
thanvisitors from higher-income CBGs (median transmission rate ratio

86 | Nature | Vol 589 | 7January 2021

of2.19) (Extended Data Table 3). We investigated why one visit to the
grocery store was predicted to be twice as dangerous for anindividual
from alower-income CBG: the mobility data showed that the average
grocery store visited by individuals from lower-income CBGs had 59%
more hourly visitors per square foot, and their visitors stayed 17% longer
onaverage (medians across metro areas). These findings highlight how
fine-grained differences in mobility patterns—how often people go out
and which POlIs that they go to—can ultimately contribute to marked
disparities in predicted infection outcomes.

Reopening plans must account for disparate effects

Because disadvantaged groups suffer alarger burden of infection, itis
criticalto not only consider the overallimpact of reopening plans but
also their disparate effects on disadvantaged groups specifically. For
example, our model predicted that full reopeningin the Chicago metro
areawould resultinanadditional 39% (95% confidence interval, 31-42%)
ofthe population of CBGsinthe bottomincome decile being infected
withinamonth, comparedto 32% (95% confidence interval, 25-35%) of
the overall population (Fig. 3f; results for all metro areas are shownin
Extended Data Fig. 3). Similarly, Supplementary Fig. 4 illustrates that
reopening individual POI categories tends to have a larger predicted
effect onlower-income CBGs. More stringent reopening plans produce
smaller absolute disparities in predicted infections—for example, we
predict that reopening at 20% of the maximum occupancy in Chicago
would result in additional infections for 6% (95% confidence interval,
4-8%) of the overall population and 10% (95% confidence interval,
7-13%) of the populationin CBGs in the bottom income decile (Fig. 3f)—
although the relative disparity remains.

Discussion

The mobility dataset that we use has limitations: it does not cover all
populations, does not contain all POIs and cannot capture sub-CBG
heterogeneity. Our model itself is also parsimonious, and does not
include all real-world features that are relevant to disease transmis-
sion. We discuss these limitations in more detail inthe Supplementary
Discussion. However, the predictive accuracy of our model suggests
thatit broadly captures the relationship between mobility and trans-
mission, and we thus expect our broad conclusions—for example,
that people from lower-income CBGs have higher infection rates in
partbecause they tend to visit denser POls and because they have not
reduced mobility by as much (probably because they cannot work from
home as easily*)—to hold robustly. Our fine-grained network modelling
approachnaturally extends to other mobility datasets and models that
capture more aspects of real-world transmission, and these represent
interesting directions for future work.

Our results can guide policy-makers that seek to assess competing
approaches to reopening. Despite growing concern about racial and
socioeconomic disparities in infections and deaths, it has been dif-
ficult for policy-makers to act on those concerns; they are currently
operating without much evidence on the disparate effects of reopening
policies, prompting calls for research that both identifies the causes
of observed disparities and suggests policy approaches to mitigate
them>®**_QOur fine-grained mobility modelling addresses both these
needs. Ourresults suggest that infection disparities are not the unavoid-
able consequence of factors that are difficult to address in the short
term, such as differences in preexisting conditions; on the contrary,
short-term policy decisions can substantially affect infection outcomes
by altering the overall amount of mobility allowed and the types of
POIs reopened. Considering the disparate effects of reopening plans
may lead policy-makers to adopt policies that can drive down infec-
tion densities in disadvantaged neighbourhoods by supporting, for
example, more stringent caps on POl occupancies, emergency food
distribution centres to reduce densities in high-risk stores, free and
widely available testing in neighbourhoods predicted to be high risk



(especially given known disparities in access to tests?), improved paid
leave policy orincome support that enables essential workers to curtail
mobility when sick, and improved workplace infection prevention for
essential workers, such as high-quality personal protective equipment,
good ventilation and physical distancing when possible. As reopening
policies continuetobe debated, itis critical to build tools that can assess
the effectiveness and equity of different approaches. We hope that our
model, by capturing heterogeneity across POls, demographic groups
and cities, helps to address this need.
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Methods

The Methods is structured as follows. We describe the datasets that
we used in the ‘Datasets’ section and the mobility network that we
derived from these datasets in the ‘Mobility network’ section. In the
‘Model dynamics’ section, we discuss the SEIR model that we overlaid
onthe mobility network; inthe ‘Model calibration’ section, we describe
how we calibrated this model and quantified uncertainty inits predic-
tions. Finally, in the ‘Analysis details’ section, we provide details on the
experimental procedures used for our analyses of mobility reduction,
reopening plans and demographic disparities.

Datasets

SafeGraph. We use data provided by SafeGraph, acompany that aggre-
gates anonymized location data from numerous mobile applications.
SafeGraph data captures the movement of people between CBGs, which
are geographical units that typically contain a population of between
600and 3,000 people, and POIs such as restaurants, grocery stores or
religious establishments. Specifically, we use the following SafeGraph
datasets.

First, we used the Places Patterns® and Weekly Patterns (v1)*° data-
sets. These datasets contain, for each POI, hourly counts of the number
of visitors, estimates of median visit duration in minutes (the ‘dwell
time’) and aggregated weekly and monthly estimates of the home CBGs
of visitors. We use visitor home CBG data from the Places Patterns
dataset: for privacy reasons, SafeGraph excludes ahome CBG from this
datasetif fewer than five devices wererecorded at the POl from that CBG
over the course of the month. For each POI, SafeGraph also provides
their North Americanindustry classification system category, as well
as estimates of its physical area in square feet. The area is computed
using the footprint polygon SafeGraph that assigns to the POI**2, We
analyse Places Patterns data from1January 2019 to 29 February 2020
and Weekly Patterns data from 1 March 2020 to 2 May 2020.

Second, we used the Social Distancing Metrics dataset*?, which con-
tains daily estimates of the proportion of people stayinghomein each
CBG. We analyse Social Distancing Metrics datafrom 1 March 2020 to
2May 2020.

We focus on 10 of the largest metro areas in the United States
(Extended Data Table 1). We chose these metro areas by taking a ran-
domsubset of the SafeGraph Patterns dataand selecting the 10 metro
areas with the most POIs in the data. The application of the methods
described in this paper to the other metro areas in the original Saf-
eGraphdatashould be straightforward. For eachmetroarea, weinclude
allPOIs that meet all of the following requirements: (1) the POlis located
inthemetroarea; (2) SafeGraph has visit data for this POl for every hour
that we model, from 00:00 on1March 2020 to 23:00 on 2 May 2020;
(3) SafeGraph has recorded the home CBGs of visitors to this POI for
atleast one month from January 2019 to February 2020; (4) the POl is
nota ‘parent’ POI. Parent POls comprise asmall fraction of POls in the
dataset that overlap and include the visits from their ‘child’ POIs: for
example, many mallsinthe dataset are parent POIs, whichinclude the
visits from stores that are their child POIs. To avoid double-counting
visits, we remove all parent POIs from the dataset. After applying these
POl filters, weinclude all CBGs that have at least one recorded visit to
atleast ten of the remaining POls; this means that CBGs from outside
the metro areamaybeincluded ifthey visit this metro areafrequently
enough. Summary statistics of the post-processed data are shown
in Extended Data Table 1. Overall, we analyse 56,945 CBGs from the
10 metro areas, and more than 310 million visits from these CBGs to
552,758 POls.

SafeGraph datahave been used to study consumer preferences** and
political polarization®. More recently, it has been used as one of the
primary sources of mobility datain the USA for tracking the effects of
the COVID-19 pandemic?*?%4¢™*8, In Supplementary Methods section
1, we show that aggregate trends in SafeGraph mobility data match

the aggregate trends in Google mobility data in the USA*, before and
after the imposition of stay-at-home measures. Previous analyses of
SafeGraph datahave shown that it is geographically representative—for
example, it does not systematically overrepresent individuals from
CBGsindifferent counties or with different racial compositions,income
levels or educational levels®**",

US census. Our data on the demographics of the CBGs comes from
the American Community Survey (ACS) of the US Census Bureau®. We
use the 5-year ACS data (2013-2017) to extract the median household
income, the proportion of white residents and the proportion of Black
residents of each CBG. For the total population of each CBG, we use
the most-recent one-year estimates (2018); one-year estimates are
noisier but we wanted to minimize systematic downward bias in our
total population counts (due to population growth) by making them
asrecentas possible.

The New York Times dataset. We calibrated our models using the
COVID-19 dataset published by the The New York Times®. Their dataset
consists of cumulative counts of cases and deaths in the USA over time,
at the state and county level. For each metro area that we modelled,
we sum over the county-level counts to produce overall counts for the
entire metro area. We convert the cumulative case and death counts
to daily counts for the purposes of model calibration, as described in
the ‘Model calibration’ section.

Data ethics. The dataset from The New York Times consists of aggregat-
ed COVID-19-confirmed case and death counts collected by journalists
from public news conferences and public datareleases. For the mobility
data, consent was obtained by the third-party sources that collected
the data. SafeGraph aggregates data from mobile applications that
obtain opt-in consent fromtheir users to collect anonymous location
data. Google’s mobility data consists of aggregated, anonymized sets
of data from users who have chosen to turn on the location history
setting. Additionally, we obtained IRB exemption for SafeGraph data
fromthe Northwestern University IRB office.

Mobility network

Definition. We consider acomplete undirected bipartite graphG=(V, &)
with time-varying edges. The vertices Vare partitioned into two disjoint
setsC={cy, ..., C,}, representing m CBGs, and P= iy pn}, represent-
ing nPOIls. From US census data, each CBG ¢;is labelled with its popula-
tion N, income distribution, and racial and age demographics. From
SafeGraph data, each POl p;is similarly labelled with its category (for
example, restaurant, grocery store or religious organization), its phys-
ical sizein square feet a, and the median dwell timed, ofvrsrtors to
p;- The weight w Jonan edge (c;, p) attimet represents our estimate
ofthe number oflnd1v1duals from CBG ¢, visiting POl p;at the tth hour
of simulation. We record the number of edges (with non-zero weights)
ineach metro area and for all hours from 1 March 2020 to 2 May 2020
inExtended Data Table 1. Across all 10 metro areas, we study 5.4 billion
edges between 56,945 CBGs and 552,758 POls.

Overview of the network estimation. The central technical challenge
in constructing this network is estimating the network weights
w© = {wi} from SafeGraph data, as this visit matrix is not directly
available fromthe data. Our general methodology for network estima-
tionis as follows.

First, from SafeGraph data, we derived atime-independent estimate
W of the visit matrix that captures the aggregate distribution of visits
from CBGs to POIs from January 2019 to February 2020.

Second, because visit patterns differ substantially from hour to hour
(for example, day versus night) and day to day (for example, before
versus after lockdown), we used current SafeGraph data to capture
these hourly variations and to estimate the CBG marginals U?, that



is, the number of people in each CBG who are out visiting POIs at hour
t, as well as the POl marginals 1/, that is, the total number of visitors
presentat each POl p;athourt.

Finally, we applied the iterative proportional fitting procedure (IPFP)
to estimate an hourly visit matrix W that s consistent with the hourly
marginals U® and V' but otherwise ‘as similar as possible’ to the dis-
tribution of visits in the aggregate visit matrix W, in terms of Kullback-
Leibler divergence.

IPFPisa classic statistical method* for adjusting joint distributions
tomatch prespecified marginal distributions, anditisalsoknowninthe
literature as biproportional fitting, the RAS algorithm or raking®. In the
social sciences, it has been widely used to infer the characteristics of
local subpopulations (for example, within each CBG) from aggregate
data®*¢, IPFP estimates the joint distribution of visits from CBGs to POIs
by alternating between scaling each row to match the hourly row (CBG)
marginals U"” and scaling each column to match the hourly column
(POI) marginals V. Further details about the estimation procedure
are provided in Supplementary Methods section 3.

Model dynamics

To model the spread of SARS-CoV-2, we overlay a metapopulation
disease transmission model on the mobility network defined in the
‘Mobility Network’ section. The transmission model structure fol-
lows previous work™>?° on epidemiological models of SARS-CoV-2 but
incorporates a fine-grained mobility network into the calculations of
the transmission rate. We construct separate mobility networks and
models for each metropolitan statistical area.

We use a SEIR model with susceptible (S), exposed (E), infectious (/)
and removed (R) compartments. Susceptible individuals have never
beeninfected, but canacquire the virus through contact with infectious
individuals, whichmay happen at POIs or in theirhome CBG. They then
enter theexposed state, during which they have beeninfected butare
notinfectiousyet.Individuals transition from exposed to infectious at
arateinversely proportional to the mean latency period. Finally, they
transitioninto the removed state at arate inversely proportional to the
meaninfectious period. The removed state represents individuals who
can no longer be infected or infect others, for example, because they
have recovered, self-isolated or died.

Each CBG ¢; maintains its own SEIR instantiation, with s©, £©), /0
and R(‘)representmg how many individualsin CBG c;arein each disease
stateat hour ¢, and N, =SO+EO+19+RY. Ateach hour ¢, we sample
the transitions between states as follows

(t) n
N, - Pois[ > AJw, (”] +Binom(s9, 1) 6]
L C, J=1
Ng)., -Binom(EY, 1/6;) )
N(’:,-)*R ~B|nom( 1/6,) 3)
where /lp istherate of infectionat POl p;attime; w,(j”,the ijthentry of

the visit matrix from the mobility network (see ’Moblllty network’), is
the number of visitors from CBG ¢;to POl p;at time; /15._ isthebaserate
ofinfectionthatisindependent of visiting POls;SEistﬁe mean latency
period; and 6,is the mean infectious period.

We then update each state to reflect these transitions. Let
ASY =58V~ 50 and likewise for AEY), AIY and ARY. Then, we make
the followmg updates

AS==NS), 4)
AED-NO .. NG, 0

A =NE ) ~Nsp, (6)
AR =N{sp,. @)

The number of new exposures. We separate the number of new ex-
posures N(”%E in CBG c; at time t into two parts: cases from visiting
POIs, which are sampled from Pois((SY/N,)Y- A(I)w(”) and other
cases not captured by visiting POIs, whxch are sampled from
Bmom(Sg’,/lg)).

First, we calculate the number of new exposures from visiting POls.
We assume that any susceptible visitor to POl p;at time ¢ has the same
independent probability /1(,5) ofbeing infected and transitioning from
the susceptible (S) to the exposed (E) state. As there are w(” visitors
from CBG c;to POl p;attime ¢, and we assume that a S("/N fractlon of
them are susceptible, the number of new exposures among these
visitors is distributed as binom(w{'SV/N,, ,A(”) POIS(A(t)LU(t)S(?/NCi).
The number of new exposures among all outgomg visitors from CBG
c;is therefore distributed as the sum of the above expression over all
POIs, Pois((S/N.) X}, A wif).

We model the mfectlon rate at POl p;at time ¢, )1 ,B(‘)(I(’)/V(‘))
as the product of its transmission rate ,B(t) and proportlon of
mfectlousmdlvndualsl(‘)/v(‘) whereV(”—Z ﬁu“)lsthetotalnumber
of visitors to p;at time £ We'model the transmission rate at POI p;at
timetas

©)

4
i
By =wdy >, (8)
’ P

where a, is the physical area of p;, and ¢ is a transmission constant
(shared across all POIs) that we it to data. Theinverse scaling of trans-
mission rate with area a, is a standard simplifying assumption®’. The
dwell time fraction dp €[0,1]is what fraction of an hour an average
visitor to p;atany hour will spendthere (Supplementary Methods sec-
tion 3); it hasa quadratic effect on the POl transmission rate ﬂg)because
itreduces both the time that a susceptible visitor spends atp, and the
density of visitors at p;. With this expression for the transmission rate
ﬁ(‘) we can calculate the infection rate at POl p;at time t as

© 10

/
A(t_):ﬂ([) P :wdz.i- (9)
P p ng) ”fapl_

For sufficiently large values of ¢ and a sufficiently large proportion
of infected individuals, the expression above can sometimes exceed
1. To address this, we simply clip the infection rate to 1. However, this
occursveryrarely for the parameter settings and simulation duration
that we use.

Finally, to compute the number of infectiousindividuals at p;at time

I(” we assume that the proportion of infectious individuals among
the wk‘) visitors to p;froma CBG ¢, mirrors the overall density of infec-
tions Iﬁfk)/ch inthat CBG, although we note that the scaling factor ¢can
account for differences in the ratio of infectious individuals who visit
POlIs. This gives

m I(f)
[0=Y gy,
P ki

T N,

(10)

In addition to the new exposures from infections at POls, we model
a CBG-specific base rate of new exposures that is independent of POI
visit activity. This captures other sources of infections, for example,
household infections or infections at POIs that are absent from the
SafeGraph data. We assume that at each hour, every susceptible
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individual in CBG c; has a base probability /lg) of becoming infected
and transitioning to the exposed state, where

) I(Ct)
AP=p !
] base Nc‘-

(11

is the product of the base transmission rate S,,.. and the proportion
of infectious individuals in CBG c;. B, is a constant (shared across all
CBGs) that we fit to data.

By adding all of the above together, the expression for the distribu-
tion of the overall number of new exposuresin CBG c;at timetbecomes

S(t) n
« . | 9 ®, (¢ ; 0 10
R L )
i J=

) n

di m I(t)
Ci _9 ZCk () | )0

¢ j=1 Ap;\ k=1 Ney

=Pois| ¢
(12)

New infections from visiting POIs

19
+ Binom|(SY,B, <=1 .
i Nc,.

Base rate of new CBG infections

The number of new infectious and removed cases. We model ex-
posed individuals as becoming infectious at a rate that is inversely
proportional to the mean latency period §;. At each time step ¢, we as-
sume that each exposed individual has a constant, time-independent
probability of becoming infectious, with

Nf_rtc)_»/chinom( o, 1/55). (13)

Similarly, we model infectious individuals as transitioning to the

removed state ataratethatisinversely proportional to the meaninfec-
tious period §,, with

N, -Binom(19,1/8)), 14)
We estimate §,=96 h (refs.?>*%) and §,= 84 h (ref.*°) based on previous
studies.

Modelinitialization. Inour experiments, t=0is the first hour of 1March
2020. We approximate the infectious /and removed R compartments
att=0asinitially empty, with all infected individuals in the exposed E
compartment. We further assume that the same expected initial preva-
lence p,occursinevery CBGc,. Att=0, everyindividualinthe metroarea
has the same independent probability p, of being exposed E instead of
susceptible S. We thusinitialize the model state by setting

SP=N, ~EY s)
EQ- Binom(NC[,pO) (16)
19=0 17)
RO=0. @18)

Aggregate mobility and no-mobility baseline models. To test
whether the detailed mobility network is necessary, or whether our
modelis simply making use of aggregate mobility patterns, we tested an

alternative SEIRmodel that uses the aggregate number of visits made to
any POlinthe metroareaineachhour, but not the breakdown of visits
between specific CBGsto specific POls. Like our model, the aggregate
mobility model also captures new cases from visiting POls and a base
rate of infection thatisindependent of POl visit activity; thus, the two
models have the same three free parameters (¢, scaling transmission
rates at POIs; ..., the base transmission rate ; and p,, the initial fraction
of infected individuals). However, instead of having POl-specific rates
ofinfection, the aggregate mobility model captures only asingle prob-
ability that a susceptible person from any CBG will become infected
due to avisit to any POl at time ¢; we make this simplification because
the aggregate mobility model no longer has access to the breakdown
of visits between CBGs and POIs. This probability /1,(,%, is defined as

m §n (€)
Yic1 ijl wi;
nm
Average mobility at time ¢

I(t)

()
Ao =9 K (19)

where mis the number of CBGs, nis the number of POIs, /¥ is the total
number of infectious individuals at time ¢, and Nis the total population
size of the metro area. For the base rate of infections in CBGs, we assume
the same process as in our network model: the probability /13) thata
susceptible personin CBG c;willbecomeinfectedin their CBG attimet
isequal to S, times the current infectious fraction of ¢; (equation (11)).
Puttingit together, the aggregate mobility model defines the number
of new exposuresin CBG c;at time t as

N(S‘C)ﬁfclf Binom(SE?,Aff&,) +

New infections from visiting POls

Binom(Sg),/lg))

Base rateof new CBG infections

(20)

Allother dynamics remain the same between the aggregate mobility
model and our networkmodel, and we calibrated the models in the same
way, which we describe in the ‘Model calibration’ section. We found
that our network model substantially outperformed the aggregate
mobility modelin predictions of out-of-sample cases: on average across
metro areas, the out-of-sample r.m.s.e. of our best-fit network model
was only 58% that of the best-fit aggregate mobility model (Extended
Data Fig. 1). This demonstrates that it is not only general mobility
patterns, but specifically the mobility network that allows our model
to accurately fit observed cases.

Next, to determine the extent to which mobility data could aid in
modelling the case trajectory, we compared our model to a baseline
SEIR model that does not use mobility data and simply assumes that
allindividuals within an metro area mix uniformly. In this no-mobility
baseline, anindividual’'srisk of beinginfected and transitioning to the
exposed state at time tis

/l(t) =ﬁ (21)

where [ is the total number of infectious individuals at time ¢, and
Nis the total population size of the metro area. As above, the other
model dynamics areidentical, and for model calibration we performed a
similar grid search over B, and p,. As expected, we found both the
network and aggregate mobility models outperformed the no-mobility
model on out-of-sample case predictions (Extended Data Fig. 1).

Model calibration and validation

Most of our model parameters caneither be estimated from SafeGraph
and US census data, or taken from previous studies (see Extended Data
Table 2 for asummary). This leaves three model parameters that do
not have direct analoguesin theliterature, and that we therefore need
to calibrate with data: (1) the transmission constant in POls, ¢ (equa-
tion (9)); (2) the base transmission rate, f,,.. (equation (11)); and (3) the
initial proportion of exposedindividuals at time t=0, p, (equation (16)).



In this section, we describe how we fitted these parameters to pub-
lished numbers of confirmed cases, as reported by The New York Times.
We fitted models for each metro area separately.

Selecting parameter ranges for y, B,... and p,. We select parameter
ranges for the transmission rate factors ¢and ... by checking whether
the model outputs match plausible ranges of the basic reproduction
number R, before lockdown, as R, has been the study of substantial
previous work on SARS-CoV-2%, Under our model, we can decompose
Ry =Rpase + Rpo, Where Ry describes transmission due to POIs and Ry,
describes the remaining transmission (as in equation (12)). We first
establish plausible ranges for R, and R;,, before translating these
into plausible ranges for S, and ¢.

We assume that Ry, ranges from 0.1to 2. R,,,.. models transmission
that is not correlated with activity at POls in the SafeGraph dataset,
including within-household transmission and transmission at POl cat-
egoriesthatare not well-capturedin the SafeGraph dataset. We chose
the lower limit of 0.1 because beyond that point, base transmission
would only contribute minimally to overall R, whereas previous stud-
ies have suggested that within-household transmission is a substan-
tial contributor to overall transmission®® % Household transmission
aloneis not estimated to be sufficient to tip the overall R, above 1; for
example, a single infected individual has been estimated to cause an
average 0f 0.32(0.22-0.42) secondary within-household infections®°.
However, because R, may also capture transmission at POls that are
not captured in the SafeGraph dataset, to be conservative, we chose
anupper limit of R,,..=2; as we describe below, the best-fit models for
all 10 metro areas have R, <2, and 9 out of 10 have R, ,,. <1. We allow
Ryo torange from1to 3, which corresponds to allowing Ry = Ryo, + Ryase
torangefrom1.1to 5. Thisisaconservatively wide range, asaprevious
study® estimated a pre-lockdown R, of 2-3.

To determine the values of Ry, and R, that agiven pair of .. and
¢ imply, we seeded a fraction of index cases and then ran the model
on looped mobility data from the first week of March to capture
pre-lockdown conditions. We initialized the model by setting p,, the
initial proportion of exposed individuals at time t=0, to p,=10"*, and
thensamplinginaccordance withequation (16). Let N,be the number
of initial exposed individuals sampled. We computed the number of
individuals that these N, index cases went on to infect through base
transmission, Ny,.., and POl transmission, Ny, which gives

N

Reor1= NL::I (22)
N

Rbase - Il\)/ase (23)

We averaged these quantities over stochastic realizations for each
metro area. Supplementary Figure 6 shows that, as expected, Ry, is
linearin By, and Rpq,is linearin ¢. R, lies in the plausible range when
Biase ranges from 0.0012to 0.024, and R, lies in the plausible range (for
atleast one metro area) when g ranges from515t04,886; we therefore
consider these parameter ranges when fitting the model.

The extent to which SARS-CoV-2 infections had spread in the USA
by the start of our simulation (1March 2020) is currently unclear®. To
account for this uncertainty, we allow p, to vary across a large range
between10°and 1072 As described in the next section, we verified that
case count data for all metro areas can be fit using parameter settings
for By, Y and p, within this range.

Fitting to the number of confirmed cases. Using the parameter
ranges described above, we grid-searched over ¢, B,,.. and p, to find
the models that best fit the number of confirmed cases reported by
The New York Times*. For each metro area, we tested 1,500 different
combinations of ¢, B, and p, in the parameter ranges specified above,

with parameters linearly spaced for ¢ and .. and logarithmically
spread for p,,.

In the ‘Model dynamics’ section, we directly model the number of
infections butnot the number of confirmed cases. To estimate the num-
ber of confirmed cases, we assume that an r,= 0.1 proportion?®864-6¢
of infections will be confirmed, and moreover that they will confirmed
exactly 6,=168 h (7 days)**%¢ after becoming infectious. From these
assumptions, we can calculate the predicted number of newly con-
firmed cases across all CBGs in the metro areaonday d,

m 24d-6,

(day d) _ (1)
Ncases =r Z Z NECA->IC.'
i=1 1=24(d-1)+1-6, '

(24)

where mindicates the total number of CBGs in the metro area and for
convenience we define N(Er[)ﬁlc.' the number of newly infectious people
athourt,tobeOwhent<I.

Fromthe dataset of The New York Times, we have the reported number

~(day d) .

of new cases N, foreachdayd, summed over each county in the
metro area. We compare the reported number of cases and the number
of cases that our model predicts by computing the r.m.s.e. between

each of the D= | 7/24| days of our simulations,

D 2
day d) _ xy(day d)

Z (Niaggs )_Ncases .

d=1

r.m.s.e.= J% (25)

For each combination of model parameters and for each metro area,
we quantify the model fit with the data from The New York Times by
running 30 stochastic realizations and averaging their r.m.s.e. Note
that we measure model fit based on the daily number of new reported
cases (as opposed to the cumulative number of reported cases)®”.
Our simulation spans 1 March to 2 May 2020, and we use mobility
datafromthat period. However, because we assume that cases will be
confirmed 6,=7 days after individuals become infectious, we predict
the number of cases with a 7-day offset, from 8 March to 9 May 2020.

Parameter selection and uncertainty quantification. Throughout this
paper, wereport aggregate predictions from different parameter sets of
Y, Boase aNd py, and multiple stochastic realizations. For each metro area,
we: (1) find the best-fit parameter set, that is, with the lowest average
r.m.s.e. on daily incident cases over stochastic realizations; (2) select
all parameter sets that achieve anr.m.s.e. (averaged over stochastic
realizations) within 20% of the r.m.s.e. of the best-fit parameter set;
and (3) pool together all predictions across those parameter sets and
allof their stochasticrealizations, and report their mean and 2.5-97.5th
percentiles.

On average, each metro area has 9.7 parameter sets that achieve an
r.m.s.e. within 20% of the best-fitting parameter set (Supplementary
Table 6). For each parameter set, we have results for 30 stochastic
realizations.

This procedure corresponds to rejection sampling in an approxi-
mate Bayesian computation framework®, for which we assume an error
model that is Gaussian with constant variance; we pick an acceptance
threshold based on what the best-fit model achieves; and we use a
uniform parameter grid instead of sampling from a uniform prior. It
quantifies uncertainty from two sources. First, the multiple realiza-
tions capture stochastic variability between model runs with the same
parameters. Second, simulating with all parameter sets that are within
20% of the r.m.s.e. of the best fit captures uncertainty in the model
parameters ¢, f,... and p,. This procedure is equivalent to assuming
that the posterior probability over the true parameters is uniformly
spread among all parameter sets within the 20% threshold.

Model validation on out-of-sample cases. We validate our mod-
els by showing that they predict the number of confirmed cases on
out-of-sample data when we have access to corresponding mobility
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data. For each metro area, we split the available dataset from the The
New York Times into a training set (spanning from 8 March 2020 to
14 April 2020) and a test set (spanning from 15 April 2020 to 9 May
2020). We fit the model parameters ¢, B,,.. and p,, as described in the
‘Mobility network’ section, but using only the training set. We then
evaluate the predictive accuracy of the resulting model on the test
set. Whenrunning our models on the test set, we still use mobility data
fromthetest period. Thus, thisis an evaluation of whether the models
can accurately predict the number of cases, given mobility data, in a
time period that was not used for model calibration. Extended Data
Figure 1shows that our network model fits the out-of-sample case data
fairly well, and that our model substantially outperforms alternative
models that use aggregated mobility data (without a network) or do
not use mobility data at all (see ‘Aggregate mobility and no-mobility
baseline models’). Note that we only use this train/test split to evaluate
out-of-sample model accuracy. All other results are generated using
parameter sets that best fit the entire dataset, as described above.

Analysis details

In this section, we include additional details about the experiments
that underlie the figures in the paper. We do not include explanations
for figures that are completely described in the main text.

Counterfactuals of mobility reduction. Associated with Fig. 2a and
Supplementary Tables 4, 5. To simulate what would have happened ifwe
changed the magnitude or timing of mobility reduction, we modified
the realmobility networks from1Marchto2May 2020, and thenranour
models onthe hypothetical data. In Fig. 2a, we report the total number
of people per 100,000 of the population ever infected (that is, in the
exposed, infectious and removed states) by the end of the simulation.
Tosimulate asmaller magnitude of mobility reduction, we interpo-
late between the mobility network from the first week of simulation
(1-7 March 2020), which we use to represent typical mobility levels,
and the actual observed mobility network for each week. Let W rep-
resent the observed visit matrix at the ¢tth hour of simulation, and let
f(t) =t mod 168 map t to its corresponding hour in the first week of
simulation, since there are 168 hin a week. To represent the scenario
inwhich people had committed toa [0, 1] times the actual observed
reductionin mobility, we construct a visit matrixi?/,, "thatisana-convex

combination of W and W®,
Wﬁf’ =aW O+ 1-aq)wf o, (26)

Ifais1, then W =W®, and we use the actual observed moblllty
network for the simulation. On the other hand, ifa =0, theniW = W/,
and we assume that people did not reduce their mobility levels atall
by looping the visit matrix for the first week of March throughout the
simulation. Any other a € [0, 1] interpolates between these two
extremes.

To simulate changing the timing of mobility reduction, we shift the
mobility network by d € [-7, 7] days. Let T represent the last hour in
our simulation (2 May 2020, 23:00), letf(t) =t mod 168 map t to its cor-
responding hourin the first week of simulation as above, and similarly
let g(¢) map t to its corresponding hour in the last week of simulation
(27 April-2 May 2020). We construct the time-shifted visit matrix Wfi)

w2 if0<¢-24d<T,

W/E24d if - 24d <0,
WweE24d) otherwise.

()

Wy = 27)

If d is positive, this corresponds to starting mobility reduction
ddayslater; if weimagine time on a horizontal line, this shifts the time
series to the right by 24d hours. However, doing so leaves the first
24d hours without visit data, so we fill it in by reusing visit data from

the first week of simulation. Likewise, if dis negative, this corresponds
to starting mobility reduction d days earlier, and we fill in the last
24d hours with visit data from the last week of simulation.

Distribution of predicted infections across POls. Associated with
Fig. 2b, Extended Data Fig. 2 and Supplementary Fig. 10. We run our
models on the observed mobility data from 1 March-2 May 2020 and
record the number of predicted infections that occur at each POL. Spe-
cifically, for each hour ¢, we compute the number of expected infections
that occur at each POl p; by taking the number ofsusceptlble people
who visit p;in that hour multiplied by the POl infection rate /l ) (equa-
tion (9)).InFig.2b and Supplementary Fig.10, we sort the POlsBy their
total predicted number of infections (summed over hours) and plot
the cumulative distribution of infections over this ordering of POls. In
Extended DataFig. 2, we select the POl categories that contribute the
most to predicted infections and plot the daily proportion of POl infec-
tions each category accounted for (summed over POIs within the
category) over time.

Reducing mobility by capping maximum occupancy. Associated with
Figs.2cand Extended Data Fig. 3. We implemented two partial reopen-
ing strategies: one that uniformly reduced visits at POIs to a fraction of
full activity, and the other that ‘capped’ the number of hourly visits at
each POl to afraction of the maximum occupancy of that the POI. For
each reopening strategy, we started the simulation on 1 March 2020
andranituntil 30 May 2020, using the observed mobility network from
1Marchto30 April 2020, and then using a hypothetical post-reopening
mobility network from 1 May to 30 May 2020, corresponding to the
projected impact of that reopening strategy. Because we only have ob-
served mobility datafrom1March to2 May 2020, we impute the missing
mobility dataup to 30 May 2020 by looping mobility data from the first
week of March, asinthe above analysis on the effect of past reductions
in mobility. Let Trepresent the last hour for which we have observed
mobility data (2 May 2020, 23:00). To simplify the notation, we define

t ift<T,
h(®) _{f(t) otherwise,

(28)
where, as above, f(t) = t mod 168. This function leaves t unchanged if
there is observed mobility data at time ¢, and otherwise maps ¢ to the
corresponding hour in the first week of our simulation.

To simulate a reopening strategy that uniformly reduced visits to
any fraction of their original level, where y € [0, 1], we constructed
the visit matrix

o [who
)=

ift<t,
(29)
yWw"® otherwise,

where trepresents the first hour of reopening (1May 2020, 00:00). In
other words, we use the actual observed mobility network up until hour
7, and then subsequently simulate an y fraction of full mobility levels.

To simulate the reduced occupancy strategy, we first estimated the
maximum occupancy M,; of each POI p; as the maximum number of
visits thatiteverhadin one hour, across all of 1March-2 May 2020. As
in previous sections, let w(” represent the ijth entry in the observed
visit matrix W9, thatis, the number of people from CBG c;who visited

p;inhour ¢, and let Vg) represent the total number of visitors to p;
|n that hour, that is, Z w(‘) We simulated capping at a §f fraction of
maxnmum occupancy, whereﬁe [0,1], by constructing the visit matrix
Wﬁ for which the jjth entry s

wj® ift<tor l/gj)s,BM "

(30)
w otherwise.



This correspondsto the following procedure: for each POl p;and time
t, we first check whether ¢ < T (reopening has not started) or whether
V(" < pM,, (the totalnumber of visits to p;at time ¢is below the allowed
maxnmumﬁM )-1fso, weleave wj{¥unchanged. Otherwise, we compute

M, . s .
the scaling factor ’ 2 that would reduce the total visits to p;at time ¢

downtothe aIIowed maximum BM,, and thenscale downall visits from
each CBG c; to p; proportionately. for both reopening strategies, we
calculate the predicted increase in cumulative incidence at the end of
the reopening period (30 May 2020) compared to the start of the reo-
pening period (1May 2020).

Relative risk of reopening different categories of POls. Associated
with Fig. 2d, Extended Data Fig. 5 and Supplementary Figs. 11, 15-24.
We study separately the reopening of the 20 POI categories with the
most visitsin SafeGraph data. In this analysis, we follow previous stud-
ies?® and do not study four categories: ‘child day-care services’ and
‘elementary and secondary schools’ (because children under 13 are
notwell-tracked by SafeGraph); ‘drinking places (alcoholic beverages)’
(because SafeGraph seems to undercount these locations®) and ‘nature
parks and other similar institutions’ (because boundaries and therefore
areas are not well-defined by SafeGraph). We also exclude ‘general
medical and surgical hospitals’and ‘other airport operations’ (because
hospitals and air travel both involve many additional risk factors that
our model is not designed to capture). We do not filter out these POIs
during modelfitting (that is, we assume that people visit these POls, and
that transmissions occur there) because including themstillincreases
the proportion of overall mobility that our dataset captures; we simply
do not analyse these categories, because we wish to be conservative
and only focus on categories for which we are most confident that we
are capturing transmission faithfully.

This reopening analysis is similar to the previous experiments on
reducing maximum occupancy versus uniform reopening (see ‘Reduc-
ing mobility by capping maximum occupancy’). As above, we set the
reopening time 7 to 1 May 2020, 00:00. To simulate reopening a POI
category, wetake the set of POlsinthat category, V, and set their activ-
ity levels after reopening to that of the first week of March. For POls
notinthe categoryV, we keep their activity levels after reopening the
same, thatis, we simply repeat the activity levels ofthelastweekg)four
data (27 April-2 May 2020): This gives us the visit matrix W with
entries

wf ife<t,

oY= wi® ifezt, pEV (31)

wf? if ez T EY

As in the above reopening analysis, f(¢) maps ¢ to the corresponding
hour in the first week of March, and g(t) maps ¢ to the corresponding
hour in the last week of our data. For each category, we calculate the
predicted difference between (1) the cumulative fraction of people who
have beeninfected by the end of the reopening period (30 May 2020)
and (2) the cumulative fraction of people infected by 30 May 2020
had we not reopened the POI category (that is, if we simply repeated
theactivity levels of the last week of our data). This seeks to model the
increasein cumulativeincidence by the end of May from reopening the
POl category. In Extended Data Fig. 5 and Supplementary Figs. 15-24,
the bottom right panel shows the predicted increase for the category
as awhole, and the bottom left panel shows the predicted increase
per POI (that is, the total increase divided by the number of POIs in
the category).

Per-capita mobility. Associated with Fig. 3d, Extended Data Fig. 6 and
Supplementary Fig. 3. Each group of CBGs (for example, the bottom

income decile) comprises a set ¢/ of CBGs that fit the corresponding
criteria. InFig.3d and Extended Data Fig. 6, we show the daily per-capita
mobilities of different pairs of groups (broken down by income and by
race). To measure the per-capita mobility of agroup on day d, we take
the total number of visits made from those CBGs to any POI,

YeeuLper Y2423 )©and divideit by the total population of the CBGs
inthegroup, YeeulNe:In Supplementary Fig. 3, we show the total num-
ber of visits made by each group to each POI category, accumulated

over theentire data period (1March-2May 2020) and then divided by
the total population of the group.

Average predicted transmission rate of a POl category. Associated
with Fig.3e and Extended Data Tables 3, 4. We compute the predicted
average hourly transmission rate experienced by agroup of CBGs/ at
aPOl categoryVas

t
zc eu Zp ey zt 1w(t)ﬁ( )

=
zceuzpevzt lwt)

(32)

’

where, as above, ‘B(pt? is the transmission rate at POl p;in hour ¢ (equa-
tion (8)), wif’is the number of visitors from CBG c; at POl p;in hour ¢,
and T'is the last hour in our simulation. This represents the expected
transmission rate encountered during a visit by someone froma CBG
ingroup U/ toaPOlin category V.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Inferred hourly mobility networks as well as the estimated models
are available at the project website (http://covid-mobility.stanford.
edu). Raw census data (https://www.census.gov/programs-surveys/
acs), case and death counts from The New York Times (https://github.
com/nytimes/covid-19-data) and Google mobility data (https://www.
google.com/covid19/mobility/) are also publicly available. Mobile
phone mobility data are freely available to researchers, non-profit
organizations and governments through the SafeGraph COVID-19 Data
Consortium (https://www.safegraph.com/covid-19-data-consortium).

Code availability

Codeis publicly available at the project website (http://covid-mobility.
stanford.edu).
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Extended Data Fig.1| Mobility-based epidemiological model and its further improves fit: on average across metro areas, the out-of-sample error
predictions. a-c, Predicted (blue) and true (orange) daily case counts for our (r.m.s.e.) of our best-fit network model was only 58% that of the best-fit
model (a), which uses hourly mobility networks, an SEIR model (b) that uses aggregate mobility model. All three models are calibrated on observed case
hourly aggregated mobility data and a baseline SEIR model (c) that does not use counts before 15 April 2020 (vertical black line). The grey crosses represent the
mobility data (see Methods, ‘Aggregate mobility and no-mobility baseline daily reported cases; as they tend to have great variability, we also show the

models’ for details). Incorporating mobility information improves out-of-sample  smoothed weekly average (orange line). Shaded regions denote the 2.5th and
fitand using a mobility network, instead of an aggregate measure of mobility, 97.5th percentiles across sampled parameters and stochastic realizations.
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Extended DataFig.2|Distribution of POl infections over time. We selected whereas grocery stores remained steady or even grew in their predicted
the POl categories that our models predicted to contribute the most to contribution, probably because they remained open as essential businesses.
infections, and plotted the predicted proportion of POlinfections that each Hotels and motels (yellow) also feature in these plots; most notably, the model
category accounted for over time. Our model predicts time-dependent predictsapeakintheir contributed infections in Miami around mid-March,
variation of where transmissions may have occurred. For example, full-service whichaligns with college spring break, as Miami is a popular vacation spot for
restaurants (blue) and fitness centres (brown) contributed less to predicted students. The proportions are stacked in these plots, and the y axes are

infections over time, probably due to lockdown orders closing these POls, truncated at 0.7 because every plot would only show ‘other’ from 0.7t01.0.
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Extended DataFig. 3| Trade-offbetween new infections and visits lost from
reopening. We simulate reduced maximum occupancy reopening starting on
1May 2020 and run the simulation until the end of the month. Each dot
representsthelevel of occupancy reduction: for example, capping visits at 50%
of themaximumoccupancy. They coordinate represents the predicted
number of new infections incurred after reopening (per 100,000 population)
andthexcoordinate represents the fraction of visits lost from partial
reopening compared to full reopening. Shaded regions denote the 2.5th and
97.5th percentiles across parameter sets and stochastic realizations. In four
metro areas, the predicted cost of new infections from reopeningis roughly

(compared to full reopening)

similar for lower-income CBGs and the overall population, butin five metro
areas, the lower-income CBGs incur more predicted infections from reopening.
Notably, New York City (NYC) is the only metro areain which this trend is
reversed; thisisbecause the model predicts that sucha high fraction—65% (95%
confidenceinterval, 62-68%)—of lower-income CBGs inNYC had been infected
before reopening that after reopening, only aminority of the lower-income
populationisstill susceptible (in comparison, the second highest fraction
infected before reopening was 31% (95% confidence interval, 28-35%) for
Philadelphia, and therest ranged from1to 14%).
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of visits. The y axis plots the relative difference between the predicted increase
in cumulative infections (from 1 May to 30 May 2020) under the reduced
occupancy strategy compared to the uniform reduction strategy. The shaded
regions denote the 2.5th and 97.5th percentiles across the sampled parameters
and stochastic realizations.
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MSAs, we model 552,758 POls in total, and we sample 97 parameters and 30
stochastic realizations (n=2,910); see Supplementary Table 6 for the number of
sets per metro area. Colours are used to distinguish the different POI categories,
but do not have any additional meaning.



Article

Atlanta Chicago
(a) 0.6 0.6
0 0.4
0:2 0.2
03-01 03-15 03-29 04-12 04-26 03-01 03-15 03-29 04-12 04-26
Dallas Houston
0.8
0.8
0.6
0.6
0.4 0.4
0.2 0.2
03-01 03-15 0329 04-12 04-26 03-01 0315 0329 04-12 04-26
:é- Los Angeles Miami
a 0 0.8
g 0.4
£ ) 0.6
i} 0.3
Q 0.4
[
3 0.2
5 01 0.2
o 03-01 03-15 03-29 04-12 04-26 03-01 03-15 03-29 04-12 04-26
New York City Philadelphia
0.6
0.6
0.4
0.4
0.2 0.2
03-01 03-15 03-29 04-12 04-26 03-01 03-15 03-29 04-12 04-26
0s San Francisco Washington DC
’ 05
0.4
0.4
0.3
0.3
0.2 02
0.1 01
03-01 03-15 03-29 04-12 04-26 "03-01 03-15 03-29 04-12 04-26
Date

—— decile with lowest income
—— decile with highest income

(b)

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.5

0.4

0.3

0.2

0.1

0.6

0.4

0.2

0.4

0.3

0.2

0.1

Atlanta Chicago
\
4\/\,\/\ 06 \/\ J\L
'S A
~ 0.4
\[I\’fo A A /\,\/‘ :
Tl
( 0.2
03-01  03-15 0329 04-12 04-26 03-01 0315 03-29 04-12 04-26
Dallas Houston
0.8
’\/\,;’\ I\/\,/\
\ 0.6
\ W, VJA
0.4 VW \r/\//\ y
0.2
03-01 03-15 03-29 04-12 04-26 03-01 03-15 03-29 04-12 04-26
Los Angeles Miami
/\/\W‘ 081 AA /J\
0.6 : '\‘
04 \,_\/_‘\ MJ\
0.2
03-01 03-15 03-29 04-12 04-26 03-01 03-15 03-29 04-12 04-26
New York City Philadelphia
. = 061 [
A A
‘l I\"" _"s"\.f»—
0.4
\/""\j"VN W 02
03-01 03-15 03-29 04-12 04-26 03-01 03-15 03-29 04-12 04-26
San Francisco Washington DC
MNA M
V 04
0.3
0.2
0.1
03-01 03-15 03-29 04-12 04-26 03-01 03-15 03-29 04-12 04-26
Date

—— decile with lowest % white

decile with hight

est % white

Extended DataFig. 6 | Daily per-capita mobility over time. a, b, We compare mobility in the lowest and highest deciles of CBGs based on median household
income (a) and the percentage of white residents (b). See Methods, ‘Analysis details’ for details.




Extended Data Table 1| Dataset summary statistics from 1 March to 2 May 2020

Metro area CBGs | POIs Hourly edges | Total modeled pop | Total visits
Atlanta 3,130 | 39411 | 540,166,727 | 7,455,619 27,669,692
Chicago 6,812 | 62,420 | 540,112,026 10,169,539 33,785,702
Dallas 4,877 | 52,999 | 752,998,455 | 9,353,561 37,298,053
Houston 3,345 | 49,622 | 609,766,288 | 7,621,541 32,943,613
Los Angeles 8,904 | 83,954 | 643,758,979 16,101,274 38,101,674
Miami 3,555 |40,964 | 487,544,190 | 6,833,129 26,347,947
New York City 14,763 | 122,428 | 1,057,789,207 | 20,729,481 66,581,080
Philadelphia 4,565 | 37,951 | 304,697,220 | 6,759,058 19,551,138
San Francisco 2,943 | 28,713 | 161,575,167 | 5,137,800 10,728,090
Washington DC 4,051 | 34,296 | 312,620,619 | 7,740,276 17,898,324
All metro areas combined | 56,945 | 552,758 | 5,411,028,878 | 97,901,278 310,905,313
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Extended Data Table 2 | Model parameters

Param. | Description Value (Source)

0r mean latency period 96 hours?*%3

or mean infectious period 84 hours?*

5. period from infectious to confirmed 7 days®* ™!

Te percentage of cases which are detected 10%24-63.69-71

Bbase base CBG transmission rate Variable (Estimated)
N, population size of CBG ¢; Variable (2018 US Census®’)
P scaling factor for POI transmission Variable (Estimated)
wg) # visitors from CBG c; to POl p; at time ¢ | Variable (SafeGraph)
ap, area of POI p; in square feet Variable (SafeGraph)
Do initial proportion of exposed population | Variable (Estimated)
Sé?) initial susceptible population in CBG ¢; (1 —po) N,

Eé?) initial exposed population in CBG ¢; oV,

1. éo ) initial infectious population in CBG c¢; 0

R((;?) initial removed population in CBG ¢; 0

If the parameter has a fixed value, we specify it under ‘Value’; otherwise, ‘Variable’ is used to indicate that it varies across CBG, POl or metro area.




Extended Data Table 3 | Predicted transmission rate disparities at each POI category between income groups

| Metro area | ATL | CHI | DAL | HOU| LA | MIA | NY | PHL | SF | DC || Median|
Full-Service 0.764 | 1.204 | 0.956 | 1.000 | 1.445| 1.232| 2.035| 2.883 | 1.758 | 1.171 1.218
Restaurants

Limited-Service 0.940 | 0.950| 1.002 | 0.906 | 1.067 | 0.872| 1.901 | 1.614 | 0.994 | 0.962 || 0.978
Restaurants
Other  General | 0.782 | 1.083 | 0.957| 0.729 | 0.760 | 0.894 | 1.218 | 1.312 | 1.045| 0.950 || 0.954
Stores
Gas Stations 1.326 | 1.865| 1.310| 1.515| 2.254| 2.195| 1.899 | 6.461 | 1.357 | 1.870 || 1.868
Fitness Centers 0.536| 0.907 | 0.708 | 0.670 | 1.461| 0.789 | 1.151| 1.516 | 0.995| 1.160 || 0.951
Grocery Stores 0.948 | 3.080 | 0.838 | 1.333 | 2.408 | 1.498 | 4.984 | 10.437| 2.478 | 1.977 || 2.192
Cafes & Snack | 1.385| 0919 | 0.716 | 1.120 | 1.327| 2.168 | 1.943 | 1.757 | 0.982 | 0.932 || 1.224
Bars
Hotels & Motels 1.228 | 1.200| 0.814 | 0.804 | 1.229| 1.134| 1.260| 1.993 | 1.199 | 1.346 || 1.214
Religious Organi- | 1.546 | 1.763 | 0.956 | 0.919 | 1.746 | 1.464 | 1.756 | 1.736 | 1.515| 1.852 || 1.641
zations
Hardware Stores 3.938 | 3.340 | 1.575| 2.111 | 1.333| 0.939| 3.553 | 6.716 | 4.202 | 13.560|| 3.446
Department 1.132| 1.230| 0.978 | 0911 | 1.083| 1.431| 1.667 | 0.976 | 0.867 | 1.042 || 1.062
Stores
Offices of Physi- | 1.235| 0.721 | 0.667 | 1.036 | 1.141 | 1.687 | 1.307 | 1.319 | 1.193| 0.445 || 1.167
cians
Pharmacies & | 1.636| 1.389 | 1.176 | 0.854 | 1.718 | 1.555| 2.577| 5.624 | 1.200| 1.699 || 1.596
Drug Stores
Sporting Goods | 0.936| 1.540| 1.129| 0.812| 1.168 | 0.700 | 1.253 | 1.161 | 0.826 | 2.777 || 1.145
Stores
Automotive Parts | 0.890 | 1.707 | 0.862 | 1.086 | 1.990 | 1.414| 1.524 | 2.697 | 1.753 | 1.246 || 1.469
Stores
Used Merchan- | 0.993 | 0.931| 1.000| 1.315| 1.017| 1.074| 1.352 | 1.668 | 1.587 | 0.814 || 1.046
dise Stores

Convenience 1.208 | 0.932| 1.613 | 0.647 | 0.838 | 0.824 | 1.736 | 2.322 | 1.086 | 1.428 || 1.147
Stores
Pet Stores 1.260 | 0.820| 1.192 | 1.487 | 1.536| 0.776 | 3.558 | 1.652 | 2.124 | 0.905 || 1.374

New Car Dealers | 2.036 | 1.471| 0.741| 0.809 | 1.180| 1.377| 2.022 | 1.129 | 0.395| 0.872 || 1.154
Hobby & Toy | 1.168| 1.110| 1.165| 0.853 | 1.771| 1.520| 1.525| 1.088 | 0.883 | 0.926 || 1.138
Stores

[ Median [ 1.188] 1.202] 0.968 0.915] 1.330] 1.305] 1.746] 1.702 | 1.196 ] 1.166 || |

We report the ratio of the average predicted transmission rate encountered by visitors from CBGs in the bottom income decile to that for the top income decile. A ratio greater than 1 means that
visitors from CBGs in the bottom income decile experienced higher (more dangerous) predicted transmission rates. See Methods, ‘Analysis details’ for details.
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Extended Data Table 4 | Predicted transmission rate disparities at each POl category between racial groups

| Metro area | ATL | CHI | DAL | HOU| LA | MIA | NY | PHL | SF | DC H Median |
Full-Service 0.802 | 1.354| 0.981| 0.965| 1.065| 1.167 | 2.418 | 2.661 | 1.223 | 1.013 || 1.116
Restaurants

Limited-Service 0.940 | 1.144 | 1.028 | 0.940 | 0.820| 0919 | 2.136| 1.523 | 0.799 | 1.346 || 0.984
Restaurants
Other  General | 0.776 | 1.277 | 0.838 | 0.841 | 1.527 | 1.132| 2.158 | 1.313 | 0.925 | 1.312 || 1.204
Stores
Gas Stations 1.402 | 1.891| 1.389| 1.190| 1.336| 1.857 | 1.818 | 2.286 | 2.321 | 1.316 || 1.610
Fitness Centers 0.607 | 1.167 | 0.670 | 0.831 | 0.780| 1.066 | 1.447 | 1.977 | 1.103 | 1.205 || 1.084
Grocery Stores 0.589 | 3.664 | 0.613 | 1.195| 2.386 | 0.950 | 5.864 | 13.705| 2.243 | 2.262 || 2.252
Cafes & Snack | 1.308 | 1.104 | 0.845| 0.840| 0.976 | 2.619 | 1.767 | 2.456 | 1.045 | 0.867 || 1.074
Bars
Hotels & Motels | 0.977 | 1.007 | 1.366 | 0.718 | 1.112 | 1.024 | 1.449 | 2.494 | 0.654 | 0.899 || 1.015
Religious Organi- | 0.938 | 1.606 | 1.060 | 0.953 | 2.096 | 1.795| 1.933 | 2.040 | 1.674 | 1.188 || 1.640
zations
Hardware Stores | 0.909 | 3.900 | 1.523 | 1.461 | 1.952| 0.586 | 5.032 | 3.898 | 11.103| 13.432|| 2.925
Department 1.081 | 1.301 | 0.805| 0.777 | 0.992 | 2.337 | 2.479 | 1.357 | 1.089 | 1.402 || 1.195
Stores
Offices of Physi- | 0.894 | 1.323 | 1.006 | 1.415| 0.898 | 1.117 | 1.652| 2.073 | 0.694 | 1.911 || 1.220
cians
Pharmacies & | 0.888 | 1.376 | 0.930| 0.732 | 1.538 | 1.674 | 3.315| 3.366 | 1.135 | 1.715 || 1.457
Drug Stores
Sporting Goods | 0.767 | 0.674 | 0.650 | 0.506 | 1.946 | 0.818 | 1.532| 2.152 | 0.880 | 1.715 || 0.849
Stores
Automotive Parts | 1.049 | 1.479| 1.010 | 1.353 | 2.998 | 2.657 | 1.740 | 3.387 | 1.646 | 0.601 || 1.562
Stores
Used Merchan- | 0.858 | 1.195| 0.699 | 1.060 | 1.270 | 0.593 | 1.500 | 3.024 | 1.425 | 0.799 || 1.128
dise Stores

Convenience 2.016 | 5.055| 1.272| 2.188| 0.761 | 0.902 | 1.911 | 2.276 | 1.239 | 1.844 || 1.878
Stores
Pet Stores 0.925| 1.624 | 0.724 | 1.465| 1.506 | 0.881 | 2.715| 10.182| 1.568 | 2.408 || 1.537

New Car Dealers | 1.008 | 1.398 | 0.812| 0.736 | 0.942 | 0.998 | 1.977 | 0.866 | 0.772 | 0.383 || 0.904
Hobby & Toy | 2.569 | 0.853| 0.628 | 0.979 | 1.373 | 1.388 | 2.237 | 0.825 | 0.864 | 1.286 || 1.132
Stores

[ Median [0.932] 1.339] 0.888] 0.959] 1.303] 1.092] 1.955] 2.281 | 1.119 | 1.314 || |

We report the ratio of the average predicted transmission rate encountered by visitors from CBGs with the lowest (bottom decile) proportion of white residents versus that for the top decile. A
ratio greater than 1 means that visitors from CBGs in the bottom decile experienced higher (more dangerous) predicted transmission rates. See Methods, ‘Analysis details’ for details.
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X O 00 0O 0

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XOO O X XK

RPN

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No data collection was performed for this study; all analysis relied on previously collected datasets, as described in the Data section below.

Data analysis All data analysis was performed using Python with standard libraries. Code is available at http://snap.stanford.edu/covid-mobility and https://
github.com/snap-stanford/covid-mobility.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Census data (https://www.census.gov/programs-surveys/acs), case and death counts from The New York Times (https://github.com/nytimes/covid-19-data), and
Google mobility data (https://www.google.com/covid19/mobility/) are publicly available. Cell phone mobility data is freely available to researchers, non-profits, and
governments through the SafeGraph COVID-19 Data Consortium (https://www.safegraph.com/covid-19-data-consortium).
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences X| Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description This is a quantitative epidemiological modeling study.
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Research sample We study previously-collected data on 10 of the largest American metropolitan statistical areas. The data came from the following:
1) Anonymized mobility data from smartphone users from SafeGraph. SafeGraph data is obtained by "partnering with mobile
applications that obtain opt-in consent from its users to collect anonymous location data", per official SafeGraph documentation.
2) US Census
3) Case and death counts from The New York Times
4) Google mobility data

Sampling strategy We did not perform sampling, but relied on previously collected datasets. All datasets were chosen as they were comprehensive: the
case and death counts and Census data were designed to cover the entire population; Google mobility data covers a large subset of
the population; and previous analyses have shown that the SafeGraph anonymized cell phone mobility dataset is geographically
representative: for example, it does not systematically over-represent individuals from higher-income areas (https://
www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset).

Data collection We did not perform data collection, but relied on previously collected datasets. Census data is collected as described here: https://
www.census.gov/programs-surveys/acs. The cell phone mobility data is collected from cell phone geolocation information, and is
anonymized and aggregated. We accessed and downloaded the datasets in May 2020.

Timing We make use of data in the following ranges:
1) Safegraph mobility data: Jan 1, 2019 - May 2, 2020
2) US Census: 2013-2018
3) Case and death counts from The New York Times: March 8 - May 9, 2020
4) Google mobility data: March 1 - May 2, 2020

Data exclusions The original SafeGraph dataset contains 5.4 million points of interest (POls). We retain a POl in our final dataset if it satisfies the
following criteria: (1) it lies within one of the 10 American metropolitan areas that we analyze (out of 384 metropolitan statistical
areas total); (2) SafeGraph has visit data for this POI for every hour that we model, from 12am on March 1, 2020 to 11pm on May 2,
2020; (3) SafeGraph has recorded the home CBGs of this POI's visitors for at least one month from January 2019 to February 2020;
(4) the POl is not a "parent" PO, as defined in the Methods section. After applying these filters, our dataset contains 553k POls. Most
POls are filtered out because they do not lie within the 10 large metropolitan statistical areas that we study; this filtering decision
was made prior to any analysis for computational tractability reasons. In our analysis of POI-specific category risks, we do not analyze
6 categories of POIs because we wish to be conservative and only focus on categories where we are most confident we are fully
capturing transmission at the category: Child Day Care Services, Elementary and Secondary Schools, Drinking Places (Alcoholic
Beverages), Nature Parks and Other Similar Institutions, General Medical and Surgical Hospitals, and Other Airport Operations. The
justifications for these exclusions, which are based on prior work, are given in the Methods section.

Non-participation Because we relied on previously collected anonymized, aggregated data from cell phone mobility tracking, we did not have access to
individual-level data and do not know how many participants dropped out/declined participation.

Randomization This is not a randomized controlled trial and participants were not randomized into experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Policy information about studies involving human research participants

Population characteristics See above.

Recruitment See above. Prior work has looked into biases in the SafeGraph dataset (https://www.safegraph.com/blog/what-about-bias-in-
the-safegraph-dataset).

Ethics oversight The dataset from The New York Times consists of aggregated COVID-19 confirmed case and death counts collected by
journalists from public news conferences and public data releases. For the mobility data, consent was obtained by the third-
party sources collecting the data. SafeGraph aggregates data from mobile applications that obtain opt-in consent from their
users to collect anonymous location data. Google’s mobility data consists of aggregated, anonymized sets of data from users
who have chosen to turn on the Location History setting. Additionally, we obtained IRB exemption for SafeGraph data from
the Northwestern University IRB office.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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