Abstract
Boronic acids and their derivatives are some of the most useful reagents in the chemical sciences1, with applications spanning pharmaceuticals, agrochemicals and functional materials. Catalytic C–H borylation is a powerful method for introducing these and other boron groups into organic molecules because it can be used to directly functionalize C–H bonds of feedstock chemicals without the need for substrate pre-activation1,2,3. These reactions have traditionally relied on precious-metal catalysts for C–H bond cleavage and, as a result, display high selectivity for borylation of aromatic C(sp2)–H bonds over aliphatic C(sp3)–H bonds4. Here we report a mechanistically distinct, metal-free borylation using hydrogen atom transfer catalysis5, in which homolytic cleavage of C(sp3)–H bonds produces alkyl radicals that are borylated by direct reaction with a diboron reagent. The reaction proceeds by violet-light photoinduced electron transfer between an N-alkoxyphthalimide-based oxidant and a chloride hydrogen atom transfer catalyst. Unusually, stronger methyl C–H bonds are borylated preferentially over weaker secondary, tertiary and even benzylic C–H bonds. Mechanistic studies indicate that the high methyl selectivity is a result of the formation of a chlorine radical–boron ‘ate’ complex that selectively cleaves sterically unhindered C–H bonds. By using a photoinduced hydrogen atom transfer strategy, this metal-free C(sp3)–H borylation enables unreactive alkanes to be transformed into valuable organoboron reagents under mild conditions and with selectivities that contrast with those of established metal-catalysed protocols.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.




Data availability
Materials and methods, experimental procedures, characterization data, spectra and additional mechanistic discussions are available in the Supplementary Information.
References
- 1.
Hall, D. G. (ed.) Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials (Wiley, 2011).
- 2.
Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).
- 3.
Xu, L. et al. Recent advances in catalytic C–H borylation reactions. Tetrahedron 73, 7123–7157 (2017).
- 4.
Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).
- 5.
Capaldo, L. & Ravelli, D. Hydrogen atom transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem. 2017, 2056–2071 (2017).
- 6.
Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E., Jr & Smith, M. R., III. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).
- 7.
Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).
- 8.
Shimada, S., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. Formation of aryl- and benzylboronate esters by rhodium-catalyzed C–H bond functionalization with pinacolborane. Angew. Chem. Int. Ed. 40, 2168–2171 (2001).
- 9.
Ishiyama, T., Ishida, K., Takagi, J. & Miyaura, N. Palladium-catalyzed benzylic C–H borylation of alkylbenzenes with bis(pinacolato)diboron or pinacolborane. Chem. Lett. 30, 1082–1083 (2001).
- 10.
Liskey, C. W. & Hartwig, J. F. Iridium-catalyzed C−H borylation of cyclopropanes. J. Am. Chem. Soc. 135, 3375–3378 (2013).
- 11.
Ohmura, T., Torigoe, T. & Suginome, M. Functionalization of tetraorganosilanes and permethyloligosilanes at a methyl group on silicon via iridium-catalyzed C(sp 3)−H borylation. Organometallics 32, 6170–6173 (2013).
- 12.
Larsen, M. A., Wilson, C. V. & Hartwig, J. F. Iridium-catalyzed borylation of primary benzylic C−H bonds without a directing group: scope, mechanism, and origins of selectivity. J. Am. Chem. Soc. 137, 8633–8643 (2015).
- 13.
Palmer, W. N., Obligacion, J. V., Pappas, I. & Chirik, P. J. Cobalt-catalyzed benzylic borylation: enabling polyborylation and functionalization of remote, unactivated C(sp 3)−H bonds. J. Am. Chem. Soc. 138, 766–769 (2016).
- 14.
Ros, A., Fernández, R. & Lassaletta, J. M. Functional group directed C–H borylation. Chem. Soc. Rev. 43, 3229–3243 (2014).
- 15.
Li, Q., Liskey, C. W. & Hartwig, J. F. Regioselective borylation of the C−H bonds in alkylamines and alkyl ethers. Observation and origin of high reactivity of primary C−H bonds beta to nitrogen and oxygen. J. Am. Chem. Soc. 136, 8755–8765 (2014).
- 16.
Larsen, M. A., Cho, S. H. & Hartwig, J. Iridium-catalyzed, hydrosilyl-directed borylation of unactivated alkyl C−H bonds. J. Am. Chem. Soc. 138, 762–765 (2016).
- 17.
He, J., Shao, Q., Wu, Q. & Yu, J.-Q. Pd(ii)-catalyzed enantioselective C(sp 3)−H borylation. J. Am. Chem. Soc. 139, 3344–3347 (2017).
- 18.
Reyes, R. L., Iwai, T., Maeda, S. & Sawamura, M. Iridium-catalyzed asymmetric borylation of unactivated methylene C(sp 3)−H bonds. J. Am. Chem. Soc. 141, 6817–6821 (2019).
- 19.
Chen, H. & Hartwig, J. F. Catalytic, regiospecific end-functionalization of alkanes: rhenium-catalyzed borylation under photochemical conditions. Angew. Chem. Int. Edn Engl. 38, 3391–3393 (1999).
- 20.
Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).
- 21.
Murphy, J. M., Lawrence, J. D., Kawamura, K., Incarvito, C. & Hartwig, J. F. Ruthenium-catalyzed regiospecific borylation of methyl C–H bonds. J. Am. Chem. Soc. 128, 13684–13685 (2006).
- 22.
Ohmura, T., Torigoe, T. & Suginome, M. Iridium-catalysed borylation of sterically hindered C(sp 3)–H bonds: remarkable rate acceleration by a catalytic amount of potassium tert-butoxide. Chem. Commun. 50, 6333–6336 (2014).
- 23.
Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).
- 24.
Ciriano, M. V., Korth, H.-G., van Scheppingen, W. B. & Mulder, P. Thermal stability of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and related N-alkoxyamines. J. Am. Chem. Soc. 121, 6375–6381 (1999).
- 25.
Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).
- 26.
Prokofjevs, A. & Vedejs, E. N-directed aliphatic C–H borylation using borenium cation equivalents. J. Am. Chem. Soc. 133, 20056–20059 (2011).
- 27.
Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).
- 28.
Guo, J.-J., Hu, A. & Zuo, Z. Photocatalytic alkoxy radical-mediated transformations. Tetrahedr. Lett. 59, 2103–2111 (2018).
- 29.
Kim, S., Lee, T. A. & Song, Y. Facile generation of alkoxy radicals from N-alkoxyphthalimides. Synlett 1998, 471–472 (1998).
- 30.
Zhang, J., Li, Y., Zhang, F., Hu, C. & Chen, Y. Generation of alkoxyl radicals by photoredox catalysis enables selective C(sp 3)–H functionalization under mild reaction conditions. Angew. Chem. Int. Ed. 55, 1872–1875 (2016).
- 31.
Cheng, Y., Mück-Lichtenfeld, C. & Studer, A. Transition metal-free 1,2-carboboration of unactivated alkenes. J. Am. Chem. Soc. 140, 6221–6225 (2018).
- 32.
Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).
- 33.
Qiao, Y., Yang, Q. & Schelter, E. J. Photoinduced Miyaura borylation by a rare-earth-metal photoreductant: the hexachlorocerate(iii) anion. Angew. Chem. Int. Ed. 57, 10999–11003 (2018).
- 34.
Baban, J. A., Goodchild, N. J. & Roberts, B. P. Electron spin resonance studies of radicals derived from 1,3,2-benzodioxaboroles. J. Chem. Soc. Perkin Trans. 2 1986, 157–161 (1986).
- 35.
Nunes, P. M. et al. C–H bond dissociation enthalpies in norbornane. An experimental and computational study. Org. Lett. 10, 1613–1616 (2008).
- 36.
Sandfort, F., Strieth-Kalthoff, F., Klauck, F. J. R., James, M. J. & Glorius, F. Deaminative borylation of aliphatic amines enabled by visible light excitation of an electron donor–acceptor complex. Chem. Eur. J. 24, 17210–17214 (2018).
- 37.
Tedder, J. M. Which factors determine the reactivity and regioselectivity of free radical substitution and addition reactions? Angew. Chem. Int. Edn Engl. 21, 401–410 (1982).
- 38.
Carestia, A. M., Ravelli, D. & Alexanian, E. J. Reagent-dictated site selectivity in intermolecular aliphatic C–H functionalizations using nitrogen-centered radicals. Chem. Sci. 9, 5360–5365 (2018).
Acknowledgements
We thank the EPSRC (EP/R004978/1) for funding. We gratefully acknowledge A. Sedikides and A. Lennox (University of Bristol) for performing cyclic voltammetry experiments.
Author information
Affiliations
Contributions
A.N. and V.K.A. conceived the project, directed the research and prepared the manuscript; C.S. performed the experimental work; all authors analysed the results.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains Supplementary Methods, Supplementary Figures 1-39, Supplementary Tables 1-21, Spectral Data and Supplementary References.
Rights and permissions
About this article
Cite this article
Shu, C., Noble, A. & Aggarwal, V.K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020). https://doi.org/10.1038/s41586-020-2831-6
Received:
Accepted:
Published:
Issue Date:
Further reading
-
( o ‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
Chemistry – A European Journal (2021)
-
Notizen aus der Chemie
Nachrichten aus der Chemie (2021)
-
Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone
Journal of the American Chemical Society (2021)
-
Chemoselective Cleavage of Si–C(sp3) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)
Journal of the American Chemical Society (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.