Seismic evidence for partial melt below tectonic plates

Abstract

The seismic low-velocity zone (LVZ) of the upper mantle is generally associated with a low-viscosity asthenosphere that has a key role in decoupling tectonic plates from the mantle1. However, the origin of the LVZ remains unclear. Some studies attribute its low seismic velocities to a small amount of partial melt of minerals in the mantle2,3, whereas others attribute them to solid-state mechanisms near the solidus4,5,6 or the effect of its volatile contents6. Observations of shear attenuation provide additional constraints on the origin of the LVZ7. On the basis of the interpretation of global three-dimensional shear attenuation and velocity models, here we report partial melt occurring within the LVZ. We observe that partial melting down to 150–200 kilometres beneath mid-ocean ridges, major hotspots and back-arc regions feeds the asthenosphere. A small part of this melt (less than 0.30 per cent) remains trapped within the oceanic LVZ. Melt is mostly absent under continental regions. The amount of melt increases with plate velocity, increasing substantially for plate velocities of between 3 centimetres per year and 5 centimetres per year. This finding is consistent with previous observations of mantle crystal alignment underneath tectonic plates8. Our observations suggest that by reducing viscosity9 melt facilitates plate motion and large-scale crystal alignment in the asthenosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Shear velocity and attenuation in the upper mantle.
Fig. 2: Observed shear attenuation as a function of shear velocity, compared with theoretical predictions.
Fig. 3: Melt content at different depths in the upper mantle.
Fig. 4: Melt fraction at different depths as a function of absolute plate velocity.

Data availability

The dataset generated during this study (three-dimensional Vs and Qs models and melt-fraction models) is available as an IRIS data product at https://doi.org/10.17611/dp/emc.2020.dbrdnature.1Source data are provided with this paper.

Code availability

Numerical modelling codes related to this paper are available from https://doi.org/10.17611/dp/emc.2020.dbrdnature.1. Most figures were created using open software GMT 4.5.13.

References

  1. 1.

    Ricard, Y., Doglioni, C. & Sabadini, R. Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. J. Geophys. Res. 96, 8407–8415 (1991).

    ADS  Google Scholar 

  2. 2.

    Kawakatsu, H. et al. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science 324, 499–502 (2009).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Chantel, J. et al. Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv. 2, e1600246 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Takei, Y. Effects of partial melting on seismic velocity and attenuation: a new insight from experiments. Annu. Rev. Earth Planet. Sci. 45, 447–470 (2017).

    ADS  CAS  Google Scholar 

  5. 5.

    Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).

    ADS  CAS  Google Scholar 

  6. 6.

    Karato, S.-i. On the origin of the asthenosphere. Earth Planet. Sci. Lett. 321322, 95–103 (2012).

    ADS  Google Scholar 

  7. 7.

    Cobden, L., Trampert, J. & Fichtner, A. Insights on upper mantle melting, rheology, and anelastic behavior from seismic shear wave tomography. Geochem. Geophys. Geosyst. 19, 3892–3916 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Debayle, E. & Ricard, Y. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett. 376, 165–177 (2013).

    ADS  CAS  Google Scholar 

  9. 9.

    Holtzman, B. K. Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere. Geochem. Geophys. Geosyst. 17, 470–484 (2016).

    ADS  Google Scholar 

  10. 10.

    Cline, C. J., Faul, U. H., David, E. C., Berry, A. J. & Jackson, I. Redox-influenced seismic properties of upper-mantle olivine. Nature 555, 355–358 (2018).

    ADS  Google Scholar 

  11. 11.

    Deschamps, F., Konishi, K., Fuji, N. & Cobden, L. Radial thermo-chemical structure beneath western and northern Pacific from seismic waveform inversion. Earth Planet. Sci. Lett. 520, 153–163 (2019).

    ADS  CAS  Google Scholar 

  12. 12.

    Shito, A., Karato, S.-i., Matsukage, K. N. & Nishihara, Y. in Earth’s Deep Water Cycle (eds Jacobsen, S. D. & Van Der Lee, S.) 255–236 (AGU, 2006).

  13. 13.

    Jackson, I., Fitz Gerald, J. D., Faul, U. H. & Tan, B. H. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res. Solid Earth 107, 2360 (2002).

    ADS  Google Scholar 

  14. 14.

    Romanowicz, B. A. & Mitchell, B. J. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 789–827 (Elsevier, 2015).

  15. 15.

    Dalton, C. A., Ekström, G. & Dziewonski, A. M. Global seismological shear velocity and attenuation: a comparison with experimental observations. Earth Planet. Sci. Lett. 284, 65–75 (2009).

    ADS  CAS  Google Scholar 

  16. 16.

    Xu, W., Lithgow-Bertelloni, C., Stixrude, L. & Ritsema, J. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275, 70–79 (2008).

    ADS  CAS  Google Scholar 

  17. 17.

    Hammond, W. C. & Humphreys, E. D. Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J. Geophys. Res. Solid Earth 105, 10975–10986 (2000).

    Google Scholar 

  18. 18.

    Bruneton, M. et al. Layered lithospheric mantle in the central Baltic Shield from surface waves and xenolith analysis. Earth Planet. Sci. Lett. 226, 41–52 (2004).

    ADS  CAS  Google Scholar 

  19. 19.

    Lin, P. Y. P. et al. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature 535, 538–541 (2016).

    ADS  CAS  Google Scholar 

  20. 20.

    Yang, Y., Forsyth, D. W. & Weeraratne, D. S. Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone. Earth Planet. Sci. Lett. 258, 260–268 (2007).

    ADS  CAS  Google Scholar 

  21. 21.

    Wallace, P. J. Water and partial melting in mantle plumes: Inferences from the dissolved H20 concentrations of Hawaiian basaltic magmas. Geophys. Res. Lett. 25, 3639–3642 (1998).

    ADS  CAS  Google Scholar 

  22. 22.

    Sieminski, A., Debayle, E. & Lévêque, J.-J. Seismic evidence for deep low-velocity anomalies in the transition zone beneath West Antarctica. Earth Planet. Sci. Lett. 216, 645–661 (2003).

    ADS  CAS  Google Scholar 

  23. 23.

    Key, K., Constable, S., Liu, L. & Pommier, A. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).

    ADS  CAS  Google Scholar 

  24. 24.

    Faul, U. H. Melt retention and segregation beneath mid-ocean ridges. Nature 410, 920–923 (2001).

    ADS  CAS  Google Scholar 

  25. 25.

    Selway, K. & O’Donnell, J. P. A small, unextractable melt fraction as the cause for the low velocity zone. Earth Planet. Sci. Lett. 517, 117–124 (2019).

    ADS  CAS  Google Scholar 

  26. 26.

    Hier-Majumder, S., Ricard, Y. & Bercovici, D. Role of grain boundaries in magma migration and storage. Earth Planet. Sci. Lett. 248, 735–749 (2006).

    ADS  CAS  Google Scholar 

  27. 27.

    Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).

    ADS  CAS  Google Scholar 

  28. 28.

    Chang, S.-J. J., Ferreira, A. M. G. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res. Solid Earth 120, 4278–4300 (2015).

    ADS  Google Scholar 

  29. 29.

    DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994).

    ADS  Google Scholar 

  30. 30.

    Adenis, A., Debayle, E. & Ricard, Y. Attenuation tomography of the upper mantle. Geophys. Res. Lett. 44, 7715–7724 (2017).

    ADS  Google Scholar 

  31. 31.

    Debayle, E. & Ricard, Y. A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. J. Geophys. Res. Solid Earth 117, B10308 (2012).

    ADS  Google Scholar 

  32. 32.

    Adenis, A., Debayle, E. & Ricard, Y. Seismic evidence for broad attenuation anomalies in the asthenosphere beneath the Pacific Ocean. Geophys. J. Int. 209, 1677–1698 (2017).

    ADS  Google Scholar 

  33. 33.

    Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 1, 1042 (2000).

    ADS  Google Scholar 

  34. 34.

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    ADS  CAS  Google Scholar 

  35. 35.

    Karato, S. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).

    ADS  Google Scholar 

  36. 36.

    Zaroli, C. Global seismic tomography using Backus-Gilbert inversion. Geophys. J. Int. 207, 876–888 (2016).

    ADS  Google Scholar 

  37. 37.

    Resovsky, J., Trampert, J. & der Hilst, R. D. Error bars for the global seismic Q profile. Earth Planet. Sci. Lett. 230, 413–423 (2005).

    ADS  CAS  Google Scholar 

  38. 38.

    French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kustowski, B., Ekstrom, G. & Dziewonski, A. M. Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J. Geophys. Res. Solid Earth 113, B06306 (2008).

    ADS  Google Scholar 

  40. 40.

    Karato, S. I., Olugboji, T. & Park, J. Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nat. Geosci. 8, 509–514 (2015).

    ADS  CAS  Google Scholar 

  41. 41.

    Ghahremani, F. Effect of grain boundary sliding on anelasticity of polycrystals. Int. J. Solids Struct. 16, 825–845 (1980).

    MATH  Google Scholar 

  42. 42.

    Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996).

    ADS  CAS  Google Scholar 

  43. 43.

    Lambart, S., Laporte, D. & Schiano, P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints. Lithos 160161, 14–36 (2013).

    ADS  Google Scholar 

  44. 44.

    Stixrude, L. & Lithgow-Bertelloni, C. Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J. Geophys. Res. Solid Earth 110, B03204 (2005).

    ADS  Google Scholar 

  45. 45.

    Behn, M. D., Hirth, G. & Elsenbeck, J. R. Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth Planet. Sci. Lett. 282, 178–189 (2009).

    ADS  CAS  Google Scholar 

  46. 46.

    Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006).

    ADS  CAS  Google Scholar 

  47. 47.

    Faul, U. H., Fitz Gerald, J. D. & Jackson, I. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J. Geophys. Res. Solid Earth 109, B06202 (2004).

    ADS  Google Scholar 

  48. 48.

    Eilon, Z. C. & Abers, G. A. High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt. Sci. Adv. 3, e1602829 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Abers, G. A. et al. Reconciling mantle attenuation-temperature relationships from seismology, petrology, and laboratory measurements. Geochem. Geophys. Geosyst. 15, 3521–3542 (2014).

    ADS  Google Scholar 

  50. 50.

    Dunn, R. A. & Forsyth, D. W. Imaging the transition between the region of mantle melt generation and the crustal magma chamber beneath the southern East Pacific Rise with short-period Love waves. J. Geophys. Res. Solid Earth 108, 2352 (2003).

    ADS  Google Scholar 

  51. 51.

    Hammond, W. C. & Humphreys, E. D. Upper mantle seismic wave attenuation: effects of realistic partial melt distribution. J. Geophys. Res. Solid Earth 105, 10987–10999 (2000).

    Google Scholar 

  52. 52.

    Turcotte, D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems Ch. 4 (John Wiley & Sons, 1982).

  53. 53.

    Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).

    ADS  Google Scholar 

  54. 54.

    Katsura, T. et al. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 183, 212–218 (2010).

    ADS  CAS  Google Scholar 

  55. 55.

    Curbelo, J. et al. Numerical solutions of compressible convection with an infinite Prandtl number: comparison of the anelastic and anelastic liquid models with the exact equations. J. Fluid Mech. 873, 646–687 (2019).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  56. 56.

    Pommier, A. & Garnero, E. J. Petrology-based modeling of mantle melt electrical conductivity and joint interpretation of electromagnetic and seismic results. J. Geophys. Res. Solid Earth 119, 4001–4016 (2014).

    ADS  Google Scholar 

  57. 57.

    Freitas, D., Manthilake, G., Chantel, J., Bouhifd, M. A. & Andrault, D. Simultaneous measurements of electrical conductivity and seismic-wave velocity of partially molten geological materials: effect of evolving melt texture. Phys. Chem. Miner. 46, 535–551 (2019).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Iris and Geoscope data centres for providing seismological data. We thank J. P. Perrillat and M. Behn for discussions on mineralogy and attenuation models, and F. Dubuffet for preparing data for sharing as IRIS data products. The European Union Horizon 2020 research and innovation programme funds T.B. under grant agreement 716542. The LABEX Lyon Institute of Origins (LIO, ANR-10-LABX-0066) of the University of Lyon funded a beowulf cluster hosted and maintained at ENSL and used in this study. The world map figures were created using open software GMT 4.5.13.

Author information

Affiliations

Authors

Contributions

E.D. and T.B. developed the concept for this paper. E.D. wrote the codes for the interpretation of the seismic models and drafted the manuscript. E.D. wrote the tomography code for Vs; Y.R. adapted this code for Qs. T.B. contributed to the design of the figures and to writing the manuscript. Y.R. developed preliminary codes for interpreting the seismic models, contributed to all mineralogical aspects and to writing the manuscript. S.D. realized the tests of the effect of composition and contributed to writing the revised manuscript.

Corresponding author

Correspondence to Eric Debayle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains 1 Table (reference parameters for Eq. A.1) and 19 Figures. Figures S1-12 test the sensibility to radial anisotropy, EAGBS, composition or anelasticity model. Figures S14 and S19 depict the predicted temperatures. Other Figures illustrate the effect of changing sensitivity to melt content, shear modulus or grain size.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Debayle, E., Bodin, T., Durand, S. et al. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020). https://doi.org/10.1038/s41586-020-2809-4

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing