Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stellar clustering shapes the architecture of planetary systems

A Publisher Correction to this article was published on 19 January 2021

This article has been updated

Abstract

Planet formation is generally described in terms of a system containing the host star and a protoplanetary disk1,2,3, of which the internal properties (for example, mass and metallicity) determine the properties of the resulting planetary system4. However, (proto)planetary systems are predicted5,6 and observed7,8 to be affected by the spatially clustered stellar formation environment, through either dynamical star–star interactions or external photoevaporation by nearby massive stars9. It is challenging to quantify how the architecture of planetary sysems is affected by these environmental processes, because stellar groups spatially disperse within less than a billion years10, well below the ages of most known exoplanets. Here we identify old, co-moving stellar groups around exoplanet host stars in the astrometric data from the Gaia satellite11,12 and demonstrate that the architecture of planetary systems exhibits a strong dependence on local stellar clustering in position-velocity phase space. After controlling for host stellar age, mass, metallicity and distance from the star, we obtain highly significant differences (with p values of 10−5 to 10−2) in planetary system properties between phase space overdensities (composed of a greater number of co-moving stars than unstructured space) and the field. The median semi-major axis and orbital period of planets in phase space overdensities are 0.087 astronomical units and 9.6 days, respectively, compared to 0.81 astronomical units and 154 days, respectively, for planets around field stars. ‘Hot Jupiters’ (massive, short-period exoplanets) predominantly exist in stellar phase space overdensities, strongly suggesting that their extreme orbits originate from environmental perturbations rather than internal migration13,14 or planet–planet scattering15,16. Our findings reveal that stellar clustering is a key factor setting the architectures of planetary systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial and kinematic distributions of stars within 40 pc of two exoplanet host stars.
Fig. 2: Distributions of exoplanet semi-major axes and masses split by ambient stellar phase space density.
Fig. 3: Normalized cumulative distribution functions of planet and host star properties, split by ambient stellar phase space density.

Similar content being viewed by others

Data availability

The Gaia data used in this work are publicly available through the Gaia archive (https://gea.esac.esa.int/archive/). The exoplanetary catalogue used in this work is publicly available through the NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu/). Results of the calculations performed as part of this work are either available in the Supplementary Information, or from the authors upon request. A table containing the planet properties, host star properties, and the phase space decomposition is publicly available at https://github.com/ajw278/astrophasesplit with file name planetdata (2).csv.

Code availability

The code used for the phase space decomposition is publicly available at https://github.com/ajw278/astrophasesplit.

Change history

  • 19 January 2021

    A Correction to this paper has been published: https://doi.org/10.1038/s41586-020-03096-5

References

  1. Armitage, P. J. Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49, 195–236 (2011).

    Article  ADS  CAS  Google Scholar 

  2. Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011).

    Article  ADS  Google Scholar 

  3. Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    Article  ADS  Google Scholar 

  4. Mordasini, C., Alibert, Y., Benz, W., Klahr, H. & Henning, T. Extrasolar planet population synthesis. IV. Correlations with disk metallicity, mass, and lifetime. Astron. Astrophys. 541, A97 (2012).

    Article  ADS  Google Scholar 

  5. Adams, F. C., Hollenbach, D., Laughlin, G. & Gorti, U. Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates. Astrophys. J. 611, 360–379 (2004).

    Article  ADS  CAS  Google Scholar 

  6. Cai, M. X., Portegies Zwart, S. & van Elteren, A. The signatures of the parental cluster on field planetary systems. Mon. Not. R. Astron. Soc. 474, 5114–5121 (2018).

    Article  ADS  Google Scholar 

  7. de Juan Ovelar, M. et al. Can habitable planets form in clustered environments? Astron. Astrophys. 546, L1 (2012).

    Article  ADS  Google Scholar 

  8. Ansdell, M. et al. An ALMA survey of protoplanetary disks in the σ Orionis cluster. Astron. J. 153, 240 (2017).

    Article  ADS  CAS  Google Scholar 

  9. Winter, A. J., Kruijssen, J. M. D., Chevance, M., Keller, B. W. & Longmore, S. N. Prevalent externally driven protoplanetary disc dispersal as a function of the galactic environment. Mon. Not. R. Astron. Soc. 491, 903–922 (2020).

    Article  ADS  Google Scholar 

  10. Krumholz, M. R., McKee, C. F. & Bland-Hawthorn, J. Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019).

    Article  ADS  Google Scholar 

  11. Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  12. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  13. Batygin, K. A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature 491, 418–420 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Baruteau, C. et al. Planet-disk interactions and early evolution of planetary systems. In Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 667 (2014).

  15. Triaud, A. H. M. J. et al. Spin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters. Astron. Astrophys. 524, A25 (2010).

    Article  Google Scholar 

  16. Albrecht, S. et al. Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. Astrophys. J. 757, 18 (2012).

    Article  ADS  Google Scholar 

  17. Kruijssen, J. M. D. On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 426, 3008–3040 (2012).

    Article  ADS  Google Scholar 

  18. Hopkins, P. F. Why do stars form in clusters? An analytic model for stellar correlation functions. Mon. Not. R. Astron. Soc. 428, 1950–1957 (2013).

    Article  ADS  Google Scholar 

  19. Quillen, A. C. et al. Spiral arm crossings inferred from ridges in Gaia stellar velocity distributions. Mon. Not. R. Astron. Soc. 480, 3132–3139 (2018).

    Article  ADS  Google Scholar 

  20. Fragkoudi, F. et al. On the ridges, undulations, and streams in Gaia DR2: linking the topography of phase space to the orbital structure of an N-body bar. Mon. Not. R. Astron. Soc. 488, 3324–3339 (2019).

    ADS  CAS  Google Scholar 

  21. Composite Planet Data Table https://catcopy.ipac.caltech.edu/dois/doi.php?id=10.26133/NEA2 (NASA Exoplanet Archive, 2019).

  22. Johnson, J. A. et al. Retired A stars and their companions: exoplanets orbiting three intermediate-mass subgiants. Astrophys. J. 665, 785–793 (2007).

    Article  ADS  CAS  Google Scholar 

  23. Hebb, L. et al. WASP-12b: the hottest transiting extrasolar planet yet discovered. Astrophys. J. 693, 1920–1928 (2009).

    Article  ADS  CAS  Google Scholar 

  24. Johnson, J. A., Aller, K. M., Howard, A. W. & Crepp, J. R. Giant planet occurrence in the stellar mass-metallicity plane. Publ. Astron. Soc. Pacif. 122, 905 (2010).

    Article  ADS  Google Scholar 

  25. Wyatt, M. C. & Jackson, A. P. Insights into planet formation from debris disks. II. Giant impacts in extrasolar planetary systems. Space Sci. Rev. 205, 231–265 (2016).

    Article  ADS  Google Scholar 

  26. Madhusudhan, N., Amin, M. A. & Kennedy, G. M. Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014).

    Article  ADS  CAS  Google Scholar 

  27. Dawson, R. I. & Johnson, J. A. Origins of Hot Jupiters. Annu. Rev. Astron. Astrophys. 56, 175–221 (2018).

    Article  ADS  Google Scholar 

  28. Jackson, B., Greenberg, R. & Barnes, R. Tidal evolution of close-in extrasolar planets. Astrophys. J. 678, 1396–1406 (2008).

    Article  ADS  Google Scholar 

  29. Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    Article  ADS  CAS  Google Scholar 

  31. Minchev, I., Boily, C., Siebert, A. & Bienayme, O. Low-velocity streams in the solar neighbourhood caused by the Galactic bar. Mon. Not. R. Astron. Soc. 407, 2122–2130 (2010).

    Article  ADS  Google Scholar 

  32. Kruijssen, J. M. D. et al. Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature 569, 519–522 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chevance, M. et al. The lifecycle of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 493, 2872–2909 (2020).

    Article  ADS  Google Scholar 

  34. Eisenstein, D. J. & Hut, P. HOP: a new group-finding algorithm for N-body simulations. Astrophys. J. 498, 137–142 (1998).

    Article  ADS  Google Scholar 

  35. Maciejewski, M., Colombi, S., Springel, V., Alard, C. & Bouchet, F. R. Phase-space structures. II. Hierarchical structure finder. Mon. Not. R. Astron. Soc. 396, 1329–1348 (2009).

    Article  ADS  Google Scholar 

  36. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  37. Seabroke, G. M. & Gilmore, G. Revisiting the relations: Galactic thin disc age-velocity dispersion relation. Mon. Not. R. Astron. Soc. 380, 1348–1368 (2007).

    Article  ADS  CAS  Google Scholar 

  38. Kamdar, H. et al. Stars that move together were born together. Astrophys. J. Lett. 884, L42 (2019).

    Article  ADS  CAS  Google Scholar 

  39. Pfeffer, J. et al. Young star cluster populations in the E-MOSAICS simulations. Mon. Not. R. Astron. Soc. 490, 1714–1733 (2019).

    Article  ADS  CAS  Google Scholar 

  40. Adamo, A. et al. Star clusters near and far; tracing star formation across cosmic time. Space Sci. Rev. 216, 69 (2020).

    Article  ADS  Google Scholar 

  41. Antoja, T., Figueras, F., Fernández, D. & Torra, J. Origin and evolution of moving groups. I. Characterization in the observational kinematic-age-metallicity space. Astron. Astrophys. 490, 135–150 (2008).

    Article  ADS  CAS  Google Scholar 

  42. Fürnkranz, V., Meingast, S. & Alves, J. Extended stellar systems in the solar neighborhood. III. Like ships in the night: the Coma Berenices neighbor moving group. Astron. Astrophys. 624, L11 (2019).

    Article  ADS  CAS  Google Scholar 

  43. Meingast, S., Alves, J. & Fürnkranz, V. Extended stellar systems in the solar neighborhood. II. Discovery of a nearby 120° stellar stream in Gaia DR2. Astron. Astrophys. 622, L13 (2019).

    Article  ADS  CAS  Google Scholar 

  44. Price-Jones, N. et al. Strong chemical tagging with APOGEE: 21 candidate star clusters that have dissolved across the Milky Way disc. Mon. Not. R. Astron. Soc. 496, 5101–5115 (2020).

    Article  ADS  CAS  Google Scholar 

  45. Famaey, B., Siebert, A. & Jorissen, A. On the age heterogeneity of the Pleiades, Hyades, and Sirius moving groups. Astron. Astrophys. 483, 453–459 (2008).

    Article  ADS  Google Scholar 

  46. Lépine, J. R. D., Michtchenko, T. A., Barros, D. A. & Vieira, R. S. S. The dynamical origin of the local arm and the Sun’s trapped orbit. Astrophys. J. 843, 48 (2017).

    Article  ADS  CAS  Google Scholar 

  47. Kamdar, H. et al. A dynamical model for clustered star formation in the Galactic disk. Astrophys. J. 884, 173 (2019).

    Article  ADS  CAS  Google Scholar 

  48. Oh, S., Price-Whelan, A. M., Hogg, D. W., Morton, T. D. & Spergel, D. N. Comoving stars in Gaia DR1: an abundance of very wide separation comoving pairs. Astron. J. 153, 257 (2017).

    Article  ADS  Google Scholar 

  49. Haisch, J., Karl, E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, L153–L156 (2001).

    Article  ADS  CAS  Google Scholar 

  50. Holland, W. S. et al. Submillimetre images of dusty debris around nearby stars. Nature 392, 788–791 (1998).

    Article  ADS  CAS  Google Scholar 

  51. Halliday, A. N. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Phil. Trans. R. Soc. Lond. A 366, 4163–4181 (2008).

    ADS  CAS  Google Scholar 

  52. Kennedy, G. M. & Wyatt, M. C. The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. Mon. Not. R. Astron. Soc. 433, 2334–2356 (2013).

    Article  ADS  Google Scholar 

  53. Snaith, O. et al. Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances. Astron. Astrophys. 578, A87 (2015).

    Article  CAS  Google Scholar 

  54. Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    Article  ADS  Google Scholar 

  55. Fischer, D. A. & Valenti, J. The planet-metallicity correlation. Astrophys. J. 622, 1102–1117 (2005).

    Article  ADS  CAS  Google Scholar 

  56. Winn, J. N., Fabrycky, D., Albrecht, S. & Johnson, J. A. Hot stars with hot Jupiters have high obliquities. Astrophys. J. Lett. 718, L145–L149 (2010).

    Article  ADS  Google Scholar 

  57. Reffert, S., Bergmann, C., Quirrenbach, A., Trifonov, T. & Künstler, A. Precise radial velocities of giant stars. VII. Occurrence rate of giant extrasolar planets as a function of mass and metallicity. Astron. Astrophys. 574, A116 (2015).

    Article  ADS  Google Scholar 

  58. Kaib, N. A., Raymond, S. N. & Duncan, M. Planetary system disruption by Galactic perturbations to wide binary stars. Nature 493, 381–384 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Veras, D., Georgakarakos, N., Dobbs-Dixon, I. & Gänsicke, B. T. Binary star influence on post-main-sequence multi-planet stability. Mon. Not. R. Astron. Soc. 465, 2053–2059 (2017).

    Article  ADS  Google Scholar 

  60. Kervella, P., Arenou, F., Mignard, F. & Thévenin, F. Stellar and substellar companions of nearby stars from Gaia DR2. Binarity from proper motion anomaly. Astron. Astrophys. 623, A72 (2019).

    Article  ADS  Google Scholar 

  61. Fontanive, C. et al. A high binary fraction for the most massive close-in giant planets and brown dwarf desert members. Mon. Not. R. Astron. Soc. 485, 4967–4996 (2019).

    Article  ADS  Google Scholar 

  62. Evans, D. F. Evidence for unresolved exoplanet-hosting binaries in Gaia DR2. Res. Not. Am. Astron. Soc. 2, 20 (2018).

    ADS  Google Scholar 

  63. Belokurov, V. et al. Unresolved stellar companions with Gaia DR2 astrometry. Mon. Not. R. Astron. Soc. 496, 1922–1940 (2020).

    Article  ADS  CAS  Google Scholar 

  64. Johnstone, D., Hollenbach, D. & Bally, J. Photoevaporation of disks and clumps by nearby massive stars: application to disk destruction in the Orion nebula. Astrophys. J. 499, 758–776 (1998).

    Article  ADS  CAS  Google Scholar 

  65. Knutson, H. A. et al. Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets. Astrophys. J. 785, 126 (2014).

    Article  ADS  Google Scholar 

  66. Davies, M. B. et al. The long-term dynamical evolution of planetary systems. In Protostars and Planets VI (University of Arizona Press, 2014).

  67. Pál, A. et al. HAT-P-7b: an extremely hot massive planet transiting a bright star in the Kepler field. Astrophys. J. 680, 1450–1456 (2008).

    Article  ADS  Google Scholar 

  68. Hartman, J. D. et al. HAT-P-12b: a low-density sub-Saturn mass planet transiting a metal-poor K dwarf. Astrophys. J. 706, 785–796 (2009).

    Article  ADS  Google Scholar 

  69. Vogt, S. S. et al. Ten low-mass companions from the Keck Precision Velocity Survey. Astrophys. J. 568, 352–362 (2002).

    Article  ADS  CAS  Google Scholar 

  70. Da Silva, R. et al. Elodie metallicity-biased search for transiting Hot Jupiters. I. Two hot Jupiters orbiting the slightly evolved stars HD 118203 and HD 149143. Astron. Astrophys. 446, 717–722 (2006).

    Article  ADS  CAS  Google Scholar 

  71. Moutou, C. et al. The SOPHIE search for northern extrasolar planets. VI. Three new hot Jupiters in multi-planet extrasolar systems. Astron. Astrophys. 563, A22 (2014).

    Article  Google Scholar 

  72. O’Donovan, F. T. et al. TrES-3: a nearby, massive, transiting hot Jupiter in a 31 hour orbit. Astrophys. J. Lett. 663, L37–L40 (2007).

    Article  ADS  Google Scholar 

  73. Hellier, C. et al. Three WASP-South transiting exoplanets: WASP-74b, WASP-83b, and WASP-89b. Astron. J. 150, 18 (2015).

    Article  ADS  CAS  Google Scholar 

  74. Hellier, C. et al. Transiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b. Mon. Not. R. Astron. Soc. 440, 1982–1992 (2014).

    Article  ADS  CAS  Google Scholar 

  75. Winn, J. N. et al. HAT-P-7: a retrograde or polar orbit, and a third body. Astrophys. J. Lett. 703, L99–L103 (2009).

    Article  ADS  Google Scholar 

  76. Mugrauer, M. Search for stellar companions of exoplanet host stars by exploring the second ESA-Gaia data release. Mon. Not. R. Astron. Soc. 490, 5088–5102 (2019).

    Article  ADS  Google Scholar 

  77. Casertano, S. & Hut, P. Core radius and density measurements in N-body experiments. Connections with theoretical and observational definitions. Astrophys. J. 298, 80–94 (1985).

    Article  ADS  Google Scholar 

  78. Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD’96) 226–231 (AAAI Press, 1996).

  79. Sharma, S. & Johnston, K. V. A group finding algorithm for multidimensional data sets. Astrophys. J. 703, 1061–1077 (2009).

    Article  ADS  Google Scholar 

  80. Myeong, G. C., Evans, N. W., Belokurov, V., Amorisco, N. C. & Koposov, S. E. Halo substructure in the SDSS-Gaia catalogue: streams and clumps. Mon. Not. R. Astron. Soc. 475, 1537–1548 (2018).

    Article  ADS  CAS  Google Scholar 

  81. Spergel, D. et al. Wide-field infrarred survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. Preprint at https://arxiv.org/abs/1503.03757 (2015).

  82. Fang, M. et al. Star formation and disk properties in Pismis 24. Astron. Astrophys. 539, A119 (2012).

    Article  CAS  Google Scholar 

  83. Guarcello, M. G. et al. Photoevaporation and close encounters: how the environment around Cygnus OB2 affects the evolution of protoplanetary disks. Preprint at https://arxiv.org/abs/1605.01773 (2016).

  84. Winter, A. J., Ansdell, M., Haworth, T. J. & Kruijssen, J. M. D. Testing viscous disc theory using the balance between stellar accretion and external photoevaporation of protoplanetary discs. Mon. Not. R. Astron. Soc. 497, L40–L45 (2020).

    Article  ADS  CAS  Google Scholar 

  85. van Terwisga, S. E., Hacar, A. & van Dishoeck, E. F. Disk masses in the Orion Molecular Cloud-2: distinguishing time and environment. Astron. Astrophys. 628, A85 (2019).

    Article  CAS  Google Scholar 

  86. Clarke, C. J. & Pringle, J. E. Accretion disc response to a stellar fly-by. Mon. Not. R. Astron. Soc. 261, 190–202 (1993).

    Article  ADS  Google Scholar 

  87. Ostriker, E. C. Capture and induced disk accretion in young star encounters. Astrophys. J. 424, 292 (1994).

    Article  ADS  Google Scholar 

  88. Bate, M. R. On the diversity and statistical properties of protostellar discs. Mon. Not. R. Astron. Soc. 475, 5618–5658 (2018).

    Article  ADS  CAS  Google Scholar 

  89. Anderson, K. R., Adams, F. C. & Calvet, N. Viscous evolution and photoevaporation of circumstellar disks due to external far ultraviolet radiation fields. Astrophys. J. 774, 9 (2013).

    Article  ADS  Google Scholar 

  90. Facchini, S., Clarke, C. J. & Bisbas, T. G. External photoevaporation of protoplanetary discs in sparse stellar groups: the impact of dust growth. Mon. Not. R. Astron. Soc. 457, 3593–3610 (2016).

    Article  ADS  CAS  Google Scholar 

  91. Winter, A. J. et al. Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters. Mon. Not. R. Astron. Soc. 478, 2700–2722 (2018).

    Article  ADS  Google Scholar 

  92. Haworth, T. J., Clarke, C. J., Rahman, W., Winter, A. J. & Facchini, S. The FRIED grid of mass-loss rates for externally irradiated protoplanetary discs. Mon. Not. R. Astron. Soc. 481, 452–466 (2018).

    Article  ADS  CAS  Google Scholar 

  93. Concha-Ramírez, F., Wilhelm, M. J. C., Portegies Zwart, S. & Haworth, T. J. External photoevaporation of circumstellar discs constrains the time-scale for planet formation. Mon. Not. R. Astron. Soc. 490, 5678–5690 (2019).

    Article  ADS  Google Scholar 

  94. Fatuzzo, M. & Adams, F. C. UV radiation fields produced by young embedded star clusters. Astrophys. J. 675, 1361–1374 (2008).

    Article  ADS  CAS  Google Scholar 

  95. O’dell, C. R. & Wen, Z. Postrefurbishment mission Hubble Space Telescope images of the core of the Orion Nebula: Proplyds, Herbig-Haro Objects, and measurements of a circumstellar disk. Astrophys. J. 436, 194 (1994).

    Article  ADS  Google Scholar 

  96. Winter, A. J., Clarke, C. J. & Rosotti, G. P. External photoevaporation of protoplanetary discs in Cygnus OB2: linking discs to star formation dynamical history. Mon. Not. R. Astron. Soc. 485, 1489–1507 (2019).

    Article  ADS  Google Scholar 

  97. Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002).

    Article  ADS  Google Scholar 

  98. Kennedy, G. M. & Kenyon, S. J. Planet formation around stars of various masses: hot super-Earths. Astrophys. J. 682, 1264–1276 (2008).

    Article  ADS  Google Scholar 

  99. Ida, S. & Lin, D. N. C. Toward a deterministic model of planetary formation. VI. Dynamical interaction and coagulation of multiple rocky embryos and super-Earth systems around solar-type stars. Astrophys. J. 719, 810–830 (2010).

    Article  ADS  Google Scholar 

  100. Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Article  ADS  CAS  Google Scholar 

  101. Lambrechts, M. et al. Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627, A83 (2019).

    Article  CAS  Google Scholar 

  102. Ward, W. R. Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997).

    Article  ADS  CAS  Google Scholar 

  103. Ragusa, E. et al. Eccentricity evolution during planet-disc interaction. Mon. Not. R. Astron. Soc. 474, 4460–4476 (2018).

    Article  ADS  Google Scholar 

  104. Pu, B. & Lai, D. Eccentricities and inclinations of multiplanet systems with external perturbers. Mon. Not. R. Astron. Soc. 478, 197–217 (2018).

    Article  ADS  Google Scholar 

  105. Dwarkadas, V. V., Dauphas, N., Meyer, B., Boyajian, P. & Bojazi, M. Triggered star formation inside the shell of a Wolf-Rayet bubble as the origin of the Solar System. Astrophys. J. 851, 147 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lichtenberg, T. et al. A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 3, 307–313 (2019).

    Article  ADS  Google Scholar 

  107. Malmberg, D., Davies, M. B. & Heggie, D. C. The effects of fly-bys on planetary systems. Mon. Not. R. Astron. Soc. 411, 859–877 (2011).

    Article  ADS  Google Scholar 

  108. van Elteren, A., Portegies Zwart, S., Pelupessy, I., Cai, M. X. & McMillan, S. L. W. Survivability of planetary systems in young and dense star clusters. Astron. Astrophys. 624, A120 (2019).

    Article  Google Scholar 

  109. Chatterjee, S., Ford, E. B., Matsumura, S. & Rasio, F. A. Dynamical outcomes of planet-planet scattering. Astrophys. J. 686, 580–602 (2008).

    Article  ADS  CAS  Google Scholar 

  110. Owen, J. E. & Lai, D. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Mon. Not. R. Astron. Soc. 479, 5012–5021 (2018).

    Article  ADS  CAS  Google Scholar 

  111. Malavolta, L. et al. The GAPS programme with HARPS-N at TNG. XI. Pr 0211 in M 44: the first multi-planet system in an open cluster. Astron. Astrophys. 588, A118 (2016).

    Article  CAS  Google Scholar 

  112. Pfalzner, S., Bhandare, A. & Vincke, K. Did a stellar fly-by shape the planetary system around Pr 0211 in the cluster M44? Astron. Astrophys. 610, A33 (2018).

    Article  ADS  Google Scholar 

  113. Pfalzner, S., Bhandare, A., Vincke, K. & Lacerda, P. Outer Solar System possibly shaped by a stellar fly-by. Astrophys. J. 863, 45 (2018).

    Article  ADS  Google Scholar 

  114. Hamers, A. S. & Tremaine, S. Hot Jupiters driven by high-eccentricity migration in globular clusters. Astron. J. 154, 272 (2017).

    Article  ADS  Google Scholar 

  115. Li, D., Mustill, A. J. & Davies, M. B. Fly-by encounters between two planetary systems I: Solar System analogues. Mon. Not. R. Astron. Soc. 488, 1366–1376 (2019).

    Article  ADS  Google Scholar 

  116. Fujii, M. S. & Hori, Y. Survival rates of planets in open clusters: the Pleiades, Hyades, and Praesepe clusters. Astron. Astrophys. 624, A110 (2019).

    Article  ADS  CAS  Google Scholar 

  117. Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010).

    Article  ADS  CAS  Google Scholar 

  118. Gounelle, M. & Meynet, G. Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron. Astrophys. 545, A4 (2012).

    Article  ADS  CAS  Google Scholar 

  119. Batygin, K., Adams, F. C., Batygin, Y. K. & Petigura, E. A. Dynamics of planetary systems within star clusters: aspects of the Solar System’s early evolution. Astron. J. 159, 101 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.J.W. thanks R. Alexander for discussions. A.J.W. acknowledges funding from the Alexander von Humboldt Stiftung in the form of a Postdoctoral Research Fellowship and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 681601). J.M.D.K. and M.C. acknowledge funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant no. KR4801/1-1) and the DFG Sachbeihilfe (grant no. KR4801/2-1). J.M.D.K. acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement no. 714907). This research made use of data from the European Space Agency mission Gaia (http://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, http://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

Author information

Authors and Affiliations

Authors

Contributions

A.J.W. led the study, developed the analysis method, and performed the analysis, with contributions from J.M.D.K. and S.N.L. A.J.W. and J.M.D.K. wrote the text, with contributions from S.N.L. and M.C. J.M.D.K. and M.C. developed the initial idea for the project. All authors contributed to aspects of the analysis and the interpretation of the results.

Corresponding author

Correspondence to Andrew J. Winter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Probability density functions of the relative phase space density for synthetic stellar populations.

Blue histograms represent the distribution of \({\tilde{\rho }}_{{\rm{M}},20}\) for a background (‘field’) population, while red histograms represent a population of stars with a spatial density perturbed by a multiplicative factor δρ* (increasing from left to right, a, d, gc, f, i) and with a velocity dispersion perturbed by a multiplicative factor δσv (increasing from top to bottom; a, b, cg, h, i). Outlined purple histograms show the sum of the perturbed and background populations. The solid black line represents a double-lognormal fit to this combined phase space density distribution, with both lognormal components marked by dotted lines. The multiplicative factors by which the density and velocity dispersion are perturbed (numbers in brackets are the values of δρ* and δσv inferred from the phase space density decomposition), as well as the probability that the distribution can be described by a single lognormal (Pnull) are shown.

Extended Data Fig. 2 Effect of the choice of threshold probability on the median exoplanet properties in environments with low and high phase space density.

The panels show the median orbital period (a), orbital eccentricity (b), and planet mass (c), for the same exoplanet host star sample as in Fig. 3. Exoplanets orbiting field stars (Plow > Pth) are shown in blue, and exoplanets orbiting stars within overdensities (Phigh > Pth) are shown in red. The median of the full sample is shown as a dashed black line, and the chosen Pth = 0.84 (adopted for our main results) is shown as a vertical black line.

Extended Data Fig. 3 Normalized cumulative distribution functions of planet and host star properties.

The samples are divided into low (blue) and high (red) host star phase space densities, without applying any cuts in host star age or mass (unlike in Fig. 3). The panels are the same as in Fig. 3 (af for exoplanet properties, gj for stellar host properties). The faint lines represent 100 Monte Carlo control experiments, constructed by drawing a star at random from within 40 pc of each exoplanet host and using the phase space density of that star instead. The logarithms of p values obtained from a two-tailed Kolmogorov–Smirnov test for the exoplanet hosts (black) and for the median of all control experiments (grey; including 16th–84th percentile uncertainties) are shown.

Extended Data Fig. 4 Normalized cumulative distribution functions of exoplanet properties that exhibit bimodal distributions.

The samples are divided into low (blue) and high (red) host star phase space densities. The sample is split across the top and bottom rows by semi-major axes (a, <0.3 au; d, >0.3 au), planet masses (b, <50M; e, >50M), and radii (c, <5R; f, >5R). The distributions are shown for the same exoplanet host sample as in Fig. 3. The faint lines represent 100 Monte Carlo control experiments, constructed by drawing a star at random from within 40 pc of each exoplanet host and using the phase space density of that star instead. The logarithms of p values obtained from a two-tailed Kolmogorov–Smirnov test for the exoplanet hosts (black) and for the median of all control experiments (grey; including 16th–84th percentile uncertainties) are shown.

Extended Data Fig. 5 Normalized cumulative distribution functions of planet and host star properties in our fiducial sample, limiting the sample to systems within 300 pc of the Sun (unlike in Fig. 3).

The samples are divided into low (blue) and high (red) host star phase space densities. The panels are the same as in Fig. 3 (af for exoplanet properties, gj for stellar host properties). The faint lines represent 100 Monte Carlo control experiments, constructed by drawing a star at random from within 40 pc of each exoplanet host and using the phase space density of that star instead. The logarithms of p values obtained from a two-tailed Kolmogorov–Smirnov test for the exoplanet hosts (black) and for the median of all control experiments (grey; including 16th–84th percentile uncertainties) are shown.

Extended Data Fig. 6 Normalized cumulative distribution functions of the kinematic properties of the host stars.

Panel a shows the distribution of absolute proper motions, whereas panel b shows the same for radial velocities. The distributions are shown for all exoplanet host stars that have age and mass estimates. The sample is split by exoplanet discovery method (radial velocity in green, transit in orange) and both subsamples have the same distance distribution by construction (see Methods). The logarithms of p values obtained from a two-tailed Kolmogorov–Smirnov test between the two survey types are shown.

Extended Data Fig. 7 Normalized cumulative distribution functions of host star properties in the complete sample of Extended Data Fig. 3.

The sample is divided into exoplanets discovered by radial velocity (ac) and transit (df) surveys. Red lines indicate exoplanet host stars that occupy a phase space overdensity, whereas blue lines represent host stars in the field. For reference, the distributions of the entire host star sample (including all detection methods) from Extended Data Fig. 3 are shown as dashed lines. The logarithms of p values obtained from a two-tailed Kolmogorov–Smirnov test are shown.

Extended Data Fig. 8 Distributions of exoplanet semi-major axes and masses split by ambient stellar phase space density for different planet discovery methods.

Columns indicate low (a, c; Plow > 0.84) and high (b, d; Phigh > 0.84) phase space densities (as in Fig. 2), split into rows of exoplanets discovered by transit (a, b) and radial velocity (c, d) surveys. Data points with grey error bars (indicating 1σ uncertainties) show individual planets and contours show a two-dimensional Gaussian kernel density estimate. The dashed black lines in a and c follow \({M}_{{\rm{p}}}\propto {a}_{{\rm{p}}}^{1.5}\) and illustrate the 1σ scatter around an orthogonal distance regression to all planets orbiting field stars that are not hot Jupiters (see Fig. 2a). For reference, b and d includes the Solar System (Phigh = 0.89) planets within ap < 10 au.

Extended Data Fig. 9 Phase space distributions of stars near the three exoplanet host stars HD 104067, HAT-P-3 and HD 285968.

Panels ac show the phase space density distributions (purple histograms), together with the best-fitting double-lognormal function (black solid line) and the individual lognormal components (black dashed lines) obtained by Gaussian mixture modelling. Keys list the probability that the density distribution is described by a single lognormal (red line) as Pnull, and the probability that each exoplanet host is associated with a phase space overdensity as Phigh. Panels df show the azimuthal (vϕ) and radial (vr) components of the stellar velocities in galactocentric coordinates. Stars in overdensities are shown in red, whereas field stars are shown in blue. To divide the stars into a low- and high-density population, we apply a Monte Carlo procedure that randomly assigns stars based on their individual probabilities of belonging to either of the two components (equation (5)). The host star velocity is shown as a star symbol. These three host stars illustrate cases of a highly significant (Phigh = 0.05) low phase space density (HD 104067), a highly significant (Phigh = 0.94) phase space overdensity (HAT-P-3) and an ambiguous (Phigh = 0.45) phase space density (HD 285968).

Extended Data Fig. 10 Age distributions of exoplanet host stars with masses 0.7M−2M.

The red histogram shows stars in overdensities (Phigh > 0.84) and the blue histogram shows field stars (Plow > 0.84). The faint lines represent the results of performing 200 Monte Carlo realizations of the ages, drawn from normal distributions defined by the measured ages and their uncertainties. The error bars show the 16th–84th percentile range of the resulting age distributions.

Supplementary information

Supplementary Table 1

The results of all the calculations we performed for each exoplanet host star in the NASA Exoplanet Archive with available six-dimensional astrometry in Gaia DR2.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, A.J., Kruijssen, J.M.D., Longmore, S.N. et al. Stellar clustering shapes the architecture of planetary systems. Nature 586, 528–532 (2020). https://doi.org/10.1038/s41586-020-2800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2800-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing