Graphene-based Josephson junction microwave bolometer


Sensitive microwave detectors are essential in radioastronomy1, dark-matter axion searches2 and superconducting quantum information science3,4. The conventional strategy to obtain higher-sensitivity bolometry is the nanofabrication of ever smaller devices to augment the thermal response5,6,7. However, it is difficult to obtain efficient photon coupling and to maintain the material properties in a device with a large surface-to-volume ratio owing to surface contamination. Here we present an ultimately thin bolometric sensor based on monolayer graphene. To utilize the minute electronic specific heat and thermal conductivity of graphene, we develop a superconductor–graphene–superconductor Josephson junction8,9,10,11,12,13 bolometer embedded in a microwave resonator with a resonance frequency of 7.9 gigahertz and over 99 per cent coupling efficiency. The dependence of the Josephson switching current on the operating temperature, charge density, input power and frequency shows a noise-equivalent power of 7 × 10−19 watts per square-root hertz, which corresponds to an energy resolution of a single 32-gigahertz photon14, reaching the fundamental limit imposed by intrinsic thermal fluctuations at 0.19 kelvin. Our results establish that two-dimensional materials could enable the development of bolometers with the highest sensitivity allowed by the laws of thermodynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Graphene-based Josephson junction microwave bolometer.
Fig. 2: Characterization of the GJJ switching current.
Fig. 3: Operation of the device as a bolometer and measurement of the detector efficiency.
Fig. 4: Sensitivity and fundamental fluctuation limit of the bolometer.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Benford, D., Amato, M., Mather, J. C., Moseley, S. H. & Leisawitz, D. Mission concept for the Single Aperture Far-Infrared (SAFIR) Observatory. Astrophys. Space Sci. 294, 177–212 (2004).

    ADS  Article  Google Scholar 

  2. 2.

    Graham, P. W., Irastorza, I. G., Lamoreaux, S. K., Lindner, A. & van Bibber, K. A. Experimental searches for the axion and axion-like particles. Annu. Rev. Nucl. Part. Sci. 65, 485–514 (2015).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Govia, L. C. G. et al. High-fidelity qubit measurement with a microwave-photon counter. Phys. Rev. A 90, 062307 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Inomata, K. et al. Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303 (2016).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol. 3, 496–500 (2008).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Gasparinetti, S. et al. Fast electron thermometry for ultrasensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Govenius, J., Lake, R. E., Tan, K. Y. & Möttönen, M. Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions. Phys. Rev. Lett. 117, 030802 (2016).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Lee, G.-H., Jeong, D., Choi, J.-H., Doh, Y.-J. & Lee, H.-J. Electrically tunable macroscopic quantum tunneling in a graphene-based Josephson junction. Phys. Rev. Lett. 107, 146605 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Coskun, U. C. et al. Distribution of supercurrent switching in graphene under the proximity effect. Phys. Rev. Lett. 108, 097003 (2012).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Borzenets, I., Coskun, U. C., Jones, S. J. & Finkelstein, G. Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures. Phys. Rev. Lett. 111, 027001 (2013).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 10, 761–764 (2015).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article  Google Scholar 

  13. 13.

    Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Moseley, S. H., Mather, J. C. & McCammon, D. Thermal detectors as X-ray spectrometers. J. Appl. Phys. 56, 1257–1262 (1984).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Fong, K. C. & Schwab, K. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).

    Google Scholar 

  17. 17.

    Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    McKitterick, C., Prober, D. & Karasik, B. Performance of graphene thermal photon detectors. J. Appl. Phys. 113, 044512 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Han, Q. et al. Highly sensitive hot electron bolometer based on disordered graphene. Sci. Rep. 3, 3533 (2013).

    Article  Google Scholar 

  21. 21.

    Cai, X. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 9, 814–819 (2014).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    El Fatimy, A. E. et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335–338 (2016).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Viljas, J. K. & Heikkila, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Chen, W. & Clerk, A. Electron-phonon mediated heat flow in disordered graphene. Phys. Rev. B 86, 125443 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & Mceuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Tirelli, S. et al. Manipulation and generation of supercurrent in out-of-equilibrium Josephson tunnel nanojunctions. Phys. Rev. Lett. 101, 077004 (2008).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Morpurgo, A. F., Klapwijk, T. M. & van Wees, B. J. Hot electron tunable supercurrent. Appl. Phys. Lett. 72, 966–968 (1998).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Oelsner, G. et al. Detection of weak microwave fields with an underdamped Josephson junction. Phys. Rev. Appl. 7, 014012 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Draelos, A. W. et al. Supercurrent flow in multiterminal graphene Josephson junctions. Nano Lett. 19, 1039–1043 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Halbertal, D. et al. Imaging resonant dissipation from individual atomic defects in graphene. Science 358, 1303–1306 (2017).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Fulton, T. A. & Dunkelberger, L. N. Lifetime of zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9, 4760–4768 (1974).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Khalil, M. S., Stoutimore, M. J. A., Wellstood, F. C. & Osborn, K. D. An analysis method for asymmetric resonator transmission applied to superconducting devices. J. Appl. Phys. 111, 054510 (2012).

    ADS  Article  Google Scholar 

  39. 39.

    Kong, J. F., Levitov, L., Halbertal, D. & Zeldov, E. Resonant electron-lattice cooling in graphene. Phys. Rev. B 97, 245416 (2018).

    ADS  CAS  Article  Google Scholar 

Download references


We acknowledge discussions with L. Levitov, M.-H. Nguyen and W. Kalfus. We thank H.-J. Lee for fabrication facility support for some of the devices. W.J. and G.-H.L. acknowledge support from the Samsung Science and Technology Foundation under Project Number SSTFBA1702-05. D.K.E. acknowledges support from the Ministry of Economy and Competitiveness of Spain through the “Severo Ochoa” programme for Centres of Excellence in R&D (SE5-0522), Fundació Privada Cellex, Fundació Privada Mir-Puig, Generalitat de Catalunya through the CERCA programme, the H2020 Programme under grant agreement 820378 (project 2DSIPC) and the La Caixa Foundation. The work of E.D.W. and D.E. was supported in part by the Army Research Laboratory Institute for Soldier Nanotechnologies programme W911NF-18-2-0048 and the US Army Research Laboratory (award W911NF-17-1-0435). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, grant number JPMXP0112101001, JSPS KAKENHI grant number JP20H00354 and CREST(JPMJCR15F3), JST. The work of P.K. and K.C.F. was supported by the US Army Research Office under Cooperative Agreement number W911NF-17-1-0574.

Author information




G.-H.L., T.A.O., D.E. and K.C.F. conceived the project. L.R., G.-H.L. and W.J. designed and fabricated the samples. T.T. and K.W. provided the hBN crystal. G.-H.L., E.D.W. and K.C.F. performed the measurements. G.-H.L., D.K.E., L.R., E.D.W., T.A.O., P.K., D.E. and K.C.F. performed the data analysis and wrote the paper. P.K., D.E. and K.C.F. supervised the project.

Corresponding author

Correspondence to Kin Chung Fong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Loaded Q factor of input resonator.

Fitting of the loaded quality factor of the microwave resonator. Shown is the phase of the S11 scattering parameter of the half-wave microwave resonator at two different gate voltages. Data from the same dataset as in Fig. 3a.

Extended Data Fig. 2 GJJ bolometer input resonator.

a, b, Suppression of the switching current at the resonance frequency of the input resonator for Device H (a) and Device T (b) with test power of −15 dBm applied outside the cryostat at 0.3 K (a) and 0.2 K (b). See Extended Data Table 1 for the dimensions and measured parameters of the devices.

Extended Data Fig. 3 GJJ switching current.

a, b, Average switching current of the Josephson junction for Device H (a) and Device T (b).

Extended Data Fig. 4 Electron cooling.

a, b, Interpolated graphene electron temperature versus input power for Device H with a carrier density of ~0.72 × 1012 cm−2 (a) and Device T with a carrier density of ~3.2 × 1012 cm−2 (b). The lines are fits using the electron–phonon heat transfer theory.

Extended Data Table 1 Sensitivity and thermal properties of the GJJ bolometer
Extended Data Table 2 GJJ properties

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, G., Efetov, D.K., Jung, W. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing