Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century


The Greenland Ice Sheet (GIS) is losing mass at a high rate1. Given the short-term nature of the observational record, it is difficult to assess the historical importance of this mass-loss trend. Unlike records of greenhouse gas concentrations and global temperature, in which observations have been merged with palaeoclimate datasets, there are no comparably long records for rates of GIS mass change. Here we reveal unprecedented mass loss from the GIS this century, by placing contemporary and future rates of GIS mass loss within the context of the natural variability over the past 12,000 years. We force a high-resolution ice-sheet model with an ensemble of climate histories constrained by ice-core data2. Our simulation domain covers southwestern Greenland, the mass change of which is dominated by surface mass balance. The results agree favourably with an independent chronology of the history of the GIS margin3,4. The largest pre-industrial rates of mass loss (up to 6,000 billion tonnes per century) occurred in the early Holocene, and were similar to the contemporary (ad 2000–2018) rate of around 6,100 billion tonnes per century5. Simulations of future mass loss from southwestern GIS, based on Representative Concentration Pathway (RCP) scenarios corresponding to low (RCP2.6) and high (RCP8.5) greenhouse gas concentration trajectories6, predict mass loss of between 8,800 and 35,900 billion tonnes over the twenty-first century. These rates of GIS mass loss exceed the maximum rates over the past 12,000 years. Because rates of mass loss from the southwestern GIS scale linearly5 with the GIS as a whole, our results indicate, with high confidence, that the rate of mass loss from the GIS will exceed Holocene rates this century.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Domain for the ice-sheet model and moraine record of past GIS change in SW Greenland.
Fig. 2: Increased and variable GIS mass loss during the Holocene.
Fig. 3: Exceptional rates of ice-mass loss in the twenty-first century, relative to the Holocene.
Fig. 4: Substantial change in surface elevation of the GIS over the twenty-first century.

Data availability

Original data published here are ice-sheet model output (Gt per century and Gt per year) and modified palaeoclimate data from ref. 2, which are available at The simulations we performed made use of the open-source ISSM and are available at (last access 1 July 2019)21.


  1. The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020).

    Article  CAS  Google Scholar 

  2. Badgeley, J. A., Steig, E. J., Hakim, G. J. & Fudge, T. J. Greenland temperature and precipitation over the last 20,000 years using data assimilation. Clim. Past 16, 1325–1346 (2020).

    Article  Google Scholar 

  3. Lesnek, A. J., Briner, J. P., Young, N. E. & Cuzzone, J. K. Maximum southwest Greenland Ice Sheet recession in the early Holocene. Geophys. Res. Lett. 47, e2019GL083164 (2020).

    Article  ADS  Google Scholar 

  4. Young, N. E. et al. Deglaciation of the Greenland and Laurentide ice sheets interrupted by glacier advance during abrupt coolings. Quat. Sci. Rev. 229, 106091 (2020).

    Article  Google Scholar 

  5. Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 116, 9239–9244 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pörtner, H.-O. et al. (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (2019);

  7. Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl Acad. Sci. USA 116, 1934–1939 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since ad 1900. Nature 528, 396–400 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Box, J. E. & Colgan, W. Greenland Ice Sheet mass balance reconstruction. Part III: marine ice loss and total mass balance (1840–2010). J. Clim. 26, 6990–7002 (2013).

    Article  ADS  Google Scholar 

  11. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2, 429–432 (2012).

    Article  ADS  Google Scholar 

  12. Koenig, S. J., DeConto, R. M. & Pollard, D. Impact of reduced Arctic sea ice on Greenland ice sheet variability in a warmer than present climate. Geophys. Res. Lett. 41, 3933–3942 (2014).

    Article  ADS  Google Scholar 

  13. Aschwanden, A. et al. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Sinclair, G. et al. Diachronous retreat of the Greenland ice sheet during the last deglaciation. Quat. Sci. Rev. 145, 243–258 (2016).

    Article  ADS  Google Scholar 

  15. Tarasov, L. & Richard Peltier, W. Greenland glacial history and local geodynamic consequences. Geophys. J. Int. 150, 198–229 (2002).

    Article  ADS  Google Scholar 

  16. Simpson, M. J. R., Milne, G. A., Huybrechts, P. & Long, A. J. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quat. Sci. Rev. 28, 1631–1657 (2009).

    Article  ADS  Google Scholar 

  17. Lecavalier, B. S. et al. A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quat. Sci. Rev. 102, 54–84 (2014).

    Article  ADS  Google Scholar 

  18. Briner, J. P. et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 147, 340–364 (2016).

    Article  ADS  Google Scholar 

  19. Buizert, C. et al. Greenland-wide seasonal temperatures during the last deglaciation. Geophys. Res. Lett. 45, 1905–1914 (2018).

    Article  ADS  Google Scholar 

  20. Nielsen, L. T., Aðalgeirsdóttir, Gu., Gkinis, V., Nuterman, R. & Hvidberg, C. S. The effect of a Holocene climatic optimum on the evolution of the Greenland ice sheet during the last 10 kyr. J. Glaciol. 64, 477–488 (2018).

    Article  ADS  Google Scholar 

  21. Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf. 117, F01022 (2012).

    ADS  Google Scholar 

  22. Cuzzone, J. K., Morlighem, M., Larour, E., Schlegel, N. & Seroussi, H. Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales. Geosci. Model Dev. 11, 1683–1694 (2018).

    Article  ADS  CAS  Google Scholar 

  23. Cuzzone, J. K. et al. The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM). Cryosphere 13, 879–893 (2019).

    Article  ADS  Google Scholar 

  24. Downs, J. et al. Western Greenland ice sheet retreat history reveals elevated precipitation during the Holocene thermal maximum. Cryosphere 14, 1121–1137 (2020).

    Article  ADS  Google Scholar 

  25. Åkesson, H., Nisancioglu, K. H. & Morlighem, M. Simulating the evolution of Hardangerjøkulen ice cap in southern Norway since the mid-Holocene and its sensitivity to climate change. Cryosphere 11, 281–302 (2017).

    Article  ADS  Google Scholar 

  26. Rignot, E. & Mouginot, J. Ice flow in Greenland for the International Polar Year 2008–2009. Geophys. Res. Lett. 39, L11501 (2012).

    Article  ADS  Google Scholar 

  27. Morlighem, M. et al. Modeling of Store Gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophys. Res. Lett. 43, 2659–2666 (2016).

    Article  ADS  Google Scholar 

  28. .Weidick, A. Observations on some Holocene glacier fluctuations in West Greenland. Medd. Gronl. 165 (1968).

  29. Larsen, N. K. et al. Rapid early Holocene ice retreat in West Greenland. Quat. Sci. Rev. 92, 310–323 (2014).

    Article  Google Scholar 

  30. Lecavalier, B. S. et al. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution. Proc. Natl Acad. Sci. USA 114, 5952–5957 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pendleton, S., Miller, G., Lifton, N. & Young, N. Cryosphere response resolves conflicting evidence for the timing of peak Holocene warmth on Baffin Island, Arctic Canada. Quat. Sci. Rev. 216, 107–115 (2019).

    Article  ADS  Google Scholar 

  32. McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. P. & Zander, P. D. The onset and rate of Holocene neoglacial cooling in the arctic. Geophys. Res. Lett. 45, 12,487–12,496 (2018).

    Article  Google Scholar 

  33. Solignac, S., Giraudeau, J. & de Vernal, A. Holocene sea surface conditions in the western North Atlantic: spatial and temporal heterogeneities. Paleoceanography 21, PA2004 (2006).

    Article  ADS  Google Scholar 

  34. Gibb, O. T., Steinhauer, S., Fréchette, B., de Vernal, A. & Hillaire-Marcel, C. Diachronous evolution of sea surface conditions in the Labrador Sea and Baffin Bay since the last deglaciation. Holocene 25, 1882–1897 (2015).

    Article  ADS  Google Scholar 

  35. Box, J. E. Greenland Ice Sheet mass balance reconstruction. Part II: surface mass balance (1840–2010). J. Clim. 26, 6974–6989 (2013).

    Article  ADS  Google Scholar 

  36. Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere Discuss. (2020).

  37. Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blatter, H. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41, 333–344 (1995).

    Article  ADS  Google Scholar 

  39. Pattyn, F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. Solid Earth 108, 2382 (2003).

    Article  ADS  CAS  Google Scholar 

  40. Aschwanden, A., Bueler, E., Khroulev, C. & Blatter, H. An enthalpy formulation for glaciers and ice sheets. J. Glaciol. 58, 441–457 (2012).

    Article  ADS  Google Scholar 

  41. Shapiro, N. M. & Ritzwoller, M. H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett. 223, 213–224 (2004).

    Article  ADS  CAS  Google Scholar 

  42. Morlighem, M. et al. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).

    Article  ADS  Google Scholar 

  43. Åkesson, H., Morlighem, M., Nisancioglu, K. H., Svendsen, J. I. & Mangerud, J. Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet. Quat. Sci. Rev. 195, 32–47 (2018).

    Article  ADS  Google Scholar 

  44. Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers (Academic Press, 2010).

  45. Seroussi, H. et al. Dependence of century-scale projections of the Greenland ice sheet on its thermal regime. J. Glaciol. 59, 1024–1034 (2013).

    Article  ADS  Google Scholar 

  46. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. He, F. et al. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Tarasov, L. & Peltier, W. R. Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle. J. Geophys. Res. Atmos. 104, 9517–9545 (1999).

    Article  ADS  Google Scholar 

  49. Janssens, I. & Huybrechts, P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Ann. Glaciol. 31, 133–140 (2000).

    Article  ADS  Google Scholar 

  50. Le Morzadec, K., Tarasov, L., Morlighem, M. & Seroussi, H. A new sub-grid surface mass balance and flux model for continental-scale ice sheet modelling: testing and last glacial cycle. Geosci. Model Dev. 8, 3199–3213 (2015).

    Article  ADS  Google Scholar 

  51. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  52. Howat, I. M., Negrete, A. & Smith, B. E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).

    Article  ADS  Google Scholar 

  53. Young, N. E. & Briner, J. P. Holocene evolution of the western Greenland Ice Sheet: Assessing geophysical ice-sheet models with geological reconstructions of ice-margin change. Quat. Sci. Rev. 114, 1–17 (2015).

    Article  ADS  Google Scholar 

  54. Courant, R., Friedrichs, K. & Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  55. Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).

    Article  ADS  Google Scholar 

  56. Nowicki, S. M. J. et al. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geosci. Model Dev. 9, 4521–4545 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Noël, B. et al. Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere 9, 1831–1844 (2015).

    Article  ADS  Google Scholar 

  58. Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 standalone ice sheet models. Cryosphere Discuss. (2020).

Download references


We acknowledge field logistical support by CH2MHill Polar Field Services. We acknowledge support by NSF-Arctic System Sciences grants ARC-1504267 to J.P.B., B.C. and E.K.T., ARC-1503281 to E.J.S. and G.J.H., ARC-1504230 to M.M., ARC-1503959 to N.E.Y. and J.M.S., and ARC-1504457 to J.V.J.; and NSF-Earth Sciences Instrumentation and Facilities grant 1652274 to E.K.T. J.A.B. acknowledges NSF Graduate Research Fellowship (DGE-1256082); A.A.C. acknowledges NSF Graduate Research Fellowship (DGE-1645677). A.d.V. and E.A. acknowledge support from the Natural Sciences and Engineering Council of Canada (NSERC) and the Fonds de Recherche du Québec - Nature et Technologie (FRQNT). S.N. acknowledge support from the NASA Sea Level Change Team and Cryosphere Sciences Programs. J.M.S. acknowledges support by the Unger Vetlesen Foundation and the Columbia Climate Center. This is LDEO contribution number 8436.

Author information

Authors and Affiliations



The project was conceived by J.P.B., N.E.Y., J.M.S., E.K.T., B.C., E.J.S., G.J.H., M.M., E.L. and J.V.J. J.P.B., J.K.C., J.A.B. and E.J.S. wrote the first draft of the manuscript. All authors commented on and edited the manuscript. N.E.Y., E.K.T. and J.P.B. led the fieldwork, with contributions from O.B., A.A.C., A.J.L., J.K.C. and J.A.B. J.K.C. led ice-sheet modelling with N.-J.S., E.L., M.M., J.V.J. and J.D. J.A.B. led climate forcing with E.J.S. and G.J.H. A.J.L., J.K.C. and J.P.B. carried out the data–model comparison. A.d.V. and E.A. provided information on sea-surface conditions. S.N. led ISMIP6 climate forcing used in this study.

Corresponding author

Correspondence to Jason P. Briner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Andy Aschwanden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Precipitation forcing for the Holocene ice-sheet simulation.

The area-averaged (over model domain) mean annual precipitation is shown for three different reconstructions2.

Extended Data Fig. 2 Temperature forcing for the Holocene ice-sheet simulation.

The area-averaged (over model domain) mean annual temperature is shown for three different reconstructions2.

Extended Data Fig. 3 Basal-friction sensitivity experiment.

The map shows the difference in the friction coefficient between the model using a friction coefficient proportional to the bedrock topography and a model using a friction coefficient derived by extrapolation. Red shows where the friction coefficient proportional to the bedrock topography is higher than the friction coefficient derived from extrapolation.

Extended Data Fig. 4 Sensitivity experiment showing the influence of basal friction on simulated GIS mass change.

The simulated ice-mass change (Gt per century) in the Holocene is shown using climatologies from model run 1 (Extended Data Table 1), with reference friction coefficients outside the present-day ice margin derived as a function of the bed topography (red) or as an extrapolation of friction coefficients (blue).

Extended Data Fig. 5 Climatology sensitivity experiment.

The simulated ice-mass change (Gt per century) in the Holocene is shown using two different reference climatologies (monthly mean) of temperature and precipitation from ref. 35, to which the temperature and precipitation anomalies from ref. 2 are applied. Blue, simulated ice-mass change using the ad 1850–2000-mean reference climatology (the same reference period as in ref. 2); red, simulated ice-mass change using the ad 1850–1950-mean reference climatology. The climate anomalies2 applied to the reference climatologies are the same as for model run 7 (Extended Data Table 1).

Extended Data Fig. 6 Data–model comparison of ice-margin change.

a, Maps showing the simulated (blue) and observed (black; from geologic reconstruction) ice margin for model simulation 7. b, Maps showing the simulated (green) and observed (black; from geologic reconstruction) ice margin for model simulation 1. See Extended Data Table 1 for a description of the model simulations. ka, thousand years ago.

Extended Data Fig. 7 Goodness-of-fit exercise in the area with detailed moraine records.

ag, Comparison of modelled and reconstructed ice margins in the northern domain (a) at six different time slices (bg). Field-reconstructed ice margins3 are represented by the black lines. Simulated ice margins not shown in b are at the domain boundary or coastline; some margins in d lie beneath other margins, making them invisible; dashed lines demarcate the comparison domain.

Extended Data Table 1 Holocene ice-sheet model simulations and the corresponding temperature and precipitation combinations
Extended Data Table 2 Data–model fit in the northern domain

Supplementary information

Video 1

Simulated surface elevation change (m/century) using run 9 with RCP 2.6 MIROC forcing.

Video 2

Simulated surface elevation change (m/century) using run 9 with RCP 8.5 MIROC forcing.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briner, J.P., Cuzzone, J.K., Badgeley, J.A. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing