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            Abstract
Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grnâˆ’/âˆ’ microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grnâˆ’/âˆ’ microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.
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                    Fig. 1: snRNA-seq reveals age-dependent microglial pathology and neuronal vulnerability in the thalamus of Grnâˆ’/âˆ’ mice.[image: ]


Fig. 2: TDP-43 proteinopathy and nuclear pore defects in Grnâˆ’/âˆ’ thalamic neurons.[image: ]


Fig. 3: Progranulin-deficient microglia promote TDP-43 proteinopathy in Grnâˆ’/âˆ’ neurons.[image: ]


Fig. 4: Complements C1q and C3b promote TDP-43 granule formation and neurodegeneration in Grnâˆ’/âˆ’ mice.[image: ]
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                Data availability

              
              The raw snRNA-seq and scRNA-seq data have been deposited to the Sequence Read Archive underÂ accession no. PRJNA507872 and no. PRJNA614533, respectively. The data that support the findings of this study are included in the manuscript. Source data are provided for Figs. 1â€“4 and Extended Data Figs. 1â€“11.
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Extended data figures and tables

Extended Data Fig. 1 snRNA-seq analysis of age-dependent transcriptomic changes in the thalamus of Grnâˆ’/âˆ’ mice.
a, Unbiased clustering of snRNA-seq data from the thalamus of 2, 4, 7, 12 and 19 months old Grn+/+ and Grnâˆ’/âˆ’ mice identify 16 different cell types. The table outlines the number and age of Grn+/+ and Grnâˆ’/âˆ’ mice used for microdissecting thalamus for snRNA-seq. Two samples, #1 in 2 months old Grn+/+ and #4 in 19 months old Grnâˆ’/âˆ’, are excluded due to suboptimal RNA quality. b, c, Subtype-specific markers for microglia (P2ry12), astrocytes (Aqp4 and Gfap), oligodendroglial precursor cells (OPC) (Pdgfra), endothelial cells (Cldn5), synaptic marker (Syt1), excitatory neurons (Cux2 and Satb2), oligodendroglia (Plp1) and inhibitory neurons (Gad2, Sst and Reln). c, Individual contribution to different cell clusters from each sample. d, Venn diagram shows the overlap of gene expression between cluster 11 and astrocyte and oligodendroglia clusters. These results indicate that cluster 11 contains mixed identity. e, Violin plots demonstrate that cells in cluster 11 express markers of myelinating oligodendroglia (Mog, Mag, Mbp and Plp1) and astrocytes (Slc1a2, Gja1, Nfia and Gpc5). Although cells in cluster 11 express a low level of the neuronal marker Syt1, they express very low levels of other neuronal markers, for example, Rbfox3, Gad1 and Gad2. f, Violin plots that show the cumulative Grn mRNA expression from 2 to 19 months in microglia (MG, c4), astrocytes (AST, c7), excitatory neurons (ExNeu, c3, c12, c13), inhibitory neurons (InNeu, c6, c9) and endothelial cells (END, c8). Statistical comparisons using MAST reveal that Grn mRNA expression MG is consistently higher than other cell clusters with the following P values: MG vs AST: 2.53 Ã— 10âˆ’40, MG vs ExNeu: 1.15 Ã— 10âˆ’8, MG vs InNeu: 8.79 Ã— 10âˆ’17 and MG vs END: 1.45 Ã— 10âˆ’17. In addition, comparisons between ExNeu and other cell clusters show the following P values: ExNeu vs AST: 8.46 Ã— 10âˆ’75, ExNeu vs InNeu: 5.57 Ã— 10âˆ’13 and ExNeu vs END: 1.38 Ã— 10âˆ’09. g, h, Normalized cell counts for inhibitory neurons (c6, c9) and astrocytes (c7) in the Grn+/+ and Grnâˆ’/âˆ’ thalamus. Data represent meanÂ Â±Â s.e.m. Statistics use two-tailed, unpaired Studentâ€™s t-test. i, Gene burden analysis for glia and neuronal clusters in Grn+/+ and Grnâˆ’/âˆ’ thalamus at 12 months old. These analyses calculate the number of genes differentially expressed in each cluster in the Grnâˆ’/âˆ’ thalamus after normalizing the number of nuclei in each cluster. Box plots show the median and 25-75th percentiles. Statistics were performed using Mannâ€“Whitney U-test.


Extended Data Fig. 2 Age-dependent changes in the transcriptomes and subclustering of microglia in the Grn+/+ and Grnâˆ’/âˆ’ thalamus.
a, Heatmap of differentially expressed genes in Grnâˆ’/âˆ’ thalamic microglia show progressive transcriptomic changes from 7, 12 to 19 months. b, c, Pseudotime analyses of snRNA-seq data reveal modest transition of trajectory and subclusters in Grn+/+ thalamic microglia from 2 to 19 months. By contrast, Grnâˆ’/âˆ’ microglia exhibit drastic changes in trajectory and subcluster distribution, especially at 12 and 19 months. The small clusters towards the right of UMAP graphs in Grn+/+ and Grnâˆ’/âˆ’ Th-MG most likely represent a small number of microglia-related cells, such as macrophages, or other unidentified cell types. The presence of this very small cluster does not contribute to the pseudotime results for Grn+/+ or Grnâˆ’/âˆ’ Th-MG. d, e, Combined pseudotime analyses show age-dependent downregulation of homeostasis genes, P2ry12 and Tmem119, and upregulation of genes associated with microglial activation, including Apoe and Ctsb, in Grnâˆ’/âˆ’ microglia. f, Volcano plot showing persistent upregulated or downregulated genes in Grnâˆ’/âˆ’ microglia from 7 to 19 months. Most differentially expressed genes (DEGs) in Grnâˆ’/âˆ’ microglia are detected at 7 and 19 months (dark red), 12 and 19 months (light blue), or 7, 12 and 19 months (beige), whereas a smaller number of DEGs are detected only in 7 months (green), 12 months (red) or 19 months (dark blue). Statistics for DEGs in the volcano plot use MAST. See Methods for details of the â€œMeta Cellâ€� pseudobulk approach to generate the volcano plot. g, Venn diagram showing a progressive increase in DEGs in Grnâˆ’/âˆ’ Th-MG from 7, 12 to 19 months. h, Venn diagrams showing limited overlap of DEGs in 19 months Grnâˆ’/âˆ’ Th-MG and AD DAM genes, and 19 months Grnâˆ’/âˆ’ Th-MG and ALS DAM genes. Statistics use hypergeometric test. i, Metascape interacting map of GO terms of the 32 genes shared by 19 months Grnâˆ’/âˆ’ Th-MG and AD DAM.


Extended Data Fig. 3 Immunohistochemical validations of DEGs in the thalamus of Grnâˆ’/âˆ’ mice.
a, b, Validations using immunohistochemistry and confocal microscopy confirm the downregulation of P2Y12 and Tmem119 in Grnâˆ’/âˆ’ thalamic microglia at 12 and 19 months, respectively (panel a). By contrast, Grnâˆ’/âˆ’ thalamic microglia show marked increases in ApoE and Adam33 protein detected by immunohistochemical staining and confocal microscopy (panel b). Insets are high magnification images from the boxed areas in the ventral thalamus. Confocal images on the right panels are obtained from 12 months old Grn+/+ and Grnâˆ’/âˆ’ thalamus. Immunohistochemistry was performed in 3 independent mice per genotype, whereas the confocal images were from two independent mice. c, Confocal images showing upregulated expression of Cathepsin B, IGF-1 and GPNMB in 12 months old Grnâˆ’/âˆ’ thalamic microglia. By contrast, Grnâˆ’/âˆ’ thalamic microglia show reduced expression of Numb. The validations were performed in NÂ =Â 3 independent mice per genotype with similar results. d, A proposed model showing the age-dependent transition of Grnâˆ’/âˆ’ thalamic microglia from a homeostatic state to disease state from 7 to 19 months. The defects in Grnâˆ’/âˆ’ microglia downregulate homeostatic genes (C1qa, C1qb, Mef2c, Csf1r, Cx3cr1, Tgfbr1, Tmem119, Adam33, Igf1 and P2ry12), and upregulate genes related to lysosomal functions (Ctsb), lipid transport (Apoe), intracellular trafficking (Myo1f, Myo5a and Numb) and signal pathways (Arhgap24 and Dock3).


Extended Data Fig. 4 snRNA-seq analysis of excitatory neuron clusters in the thalamus of Grn+/+ and Grnâˆ’/âˆ’ mice.
aâ€“c, snRNA-seq identifies three distinct clusters of excitatory neurons based on the combined expression of Ttr (Transthyretin), Pde4d (Phosphodiesterase 4D) and Cntnap2 (Contactin associated protein like 2) in cluster 3, Prkcd (Protein kinase C Delta), Shisa6 (Shisa family member 6) and Plekhg1 (Pleckstrin homology and RhoGEF domain containing G1) in cluster 12, and Cntn5 (Contactin 5), Foxp2 (Forkhead Box P2) and Nxph1 (Neurexophilin 1) in cluster 13. d, Heatmaps of cluster 3 and cluster 13 show no definitive age-dependent changes in the transcriptomes. e, Comparison of excitatory neuron subtypes in 19 months old Grn+/+ and Grnâˆ’/âˆ’ thalamus using immunohistochemical stains for PKCÎ´ (upper panels) and Foxp2 (lower panels) reveals loss of PKCÎ´+ and Foxp2+ neurons, most prominently affecting neurons in the ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei of the thalamus. f, Stereology quantification of PKCÎ´+ and Foxp2+ neurons in the ventral thalamus of Grn+/+ and Grnâˆ’/âˆ’ mice at 7, 12 and 19 months old. Data represent meanÂ Â±Â s.e.m., and the number of mice for each age and genotype is indicated at the bottom of each data set. Statistics uses two-tailed, unpaired Studentâ€™s t-test. ns, not significant.


Extended Data Fig. 5 Characterization of P3 primary microglia from Grn+/+ and Grnâˆ’/âˆ’ mice using scRNA-seq, NanoString nCounter neuroinflammation panel and western blots.
a, A schematic diagram illustrating the study design to characterize primary microglia from postnatal day 3 (P3) Grn+/+ and Grnâˆ’/âˆ’ mice using scRNA-seq and NanoString nCounter neuroinflammation panel, and to prepare serum-free conditioned media from Grn+/+ and Grnâˆ’/âˆ’ P3-MG. In parallel, primary cortical neurons and GABAergic inhibitory neurons are isolated from the developing cortex and ganglionic eminences of embryonic day 15.5 (E15.5) Grn+/+ and Grnâˆ’/âˆ’ mice. After 14 days in vitro (DIV), Grn+/+ and Grnâˆ’/âˆ’ microglial conditioned media (MCM) are added to Grn+/+ and Grnâˆ’/âˆ’ excitatory neurons or GABAergic inhibitory neurons and incubate for 24 h. b, t-SNE plots of scRNA-seq data from Grn+/+ and Grnâˆ’/âˆ’ P3-MG revealed 4 distinct clusters and the extent of overlapping in cell density and cluster distribution between Grn+/+ and Grnâˆ’/âˆ’ P3-MG. c, Comparison of cluster A of P3-MG with 2 to 19 months (mo) thalamic microglia (Th-MG) reveals more overlapping between P3-MG (black) and 19 mo Th-MG (red). d, Hierarchical clustering of gene expression in Grn+/+ and Grnâˆ’/âˆ’ P3-MG cluster A and 19 months old Th-MG. e, Venn diagrams showing the extent of overlapping between DEGs from 12 and 19 months old Th-MG and DEGs in P3-MG identified by scRNA-seq (upper panel) or DEGs in P3-MG identified by NanoString nCounter Neuroinflammation panel (lower panel). Statistics use the hypergeometric test. f, Volcano plot showing the upregulated and downregulated genes in Grnâˆ’/âˆ’ P3-MG revealed by nCounter neuroinflammation panel. Statistics use nSolver software version 4.0, provided by the NanoString Technologies, Inc. g, Quantification of the DEGs in Grnâˆ’/âˆ’ P3-MG that are shared with 19 months Grnâˆ’/âˆ’ Th-MG, including upregulation of Arhgap24 and Cables1, and downregulation of Chn2, Plxdc2, C1qa, Mef2c, Csf1r, Cx3cr1, Tgfbr1, Il6ra, Lair1 and Slco2b1. Data represent meanÂ Â±Â s.e.m., nÂ =Â 4 for each genotype. Statistics uses two-tailed, unpaired Studentâ€™s t-test. h, Western blots and quantification show upregulation of cathepsin B, myosin Va, Adam33 and ATG7, but downregulation of Mef2c and Numb. Data represent meanÂ Â±Â s.e.m., nÂ =Â 3 for each protein. Statistics uses two-tailed, unpaired Studentâ€™s t-test.


Extended Data Fig. 6 Grnâˆ’/âˆ’ MCM-induced cell death in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons and GABAergic neurons.
a, Representative confocal images of Grn+/+ and Grnâˆ’/âˆ’ cortical neurons treated with control media, Grn+/+ MCM or Grnâˆ’/âˆ’ MCM (100 Î¼g/ml) overnight. Immunofluorescent stains are performed using antibodies for MAP2 (green) and cleaved caspase 3 (red). Nuclei are highlighted using DAPI. b, Representative confocal microscopic images of GE-derived Grn+/+ and Grnâˆ’/âˆ’ GABAergic interneurons treated with control media, Grn+/+ MCM or Grnâˆ’/âˆ’ MCM (100 Î¼g/ml) overnight. Immunofluorescent stains are performed using antibodies for GAD67 (green) and cleaved caspase 3 (red). Nuclei are highlighted using DAPI.


Extended Data Fig. 7 Nuclear pore defects in Grnâˆ’/âˆ’neurons treated with Grnâˆ’/âˆ’ MCM.
a, 3D structured illumination microscopy (SIM) images of Nup98 and LMN A/B in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons treated with control media, Grn+/+ MCM and Grnâˆ’/âˆ’ MCM (250 Î¼g/ml). Nup98 is shown in red, Lamin A/B in green and MAP2 in blue. b, Nup98 intensity distribution per intranuclear grid (0.44 Ã— 0.44 Î¼m2) in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons treated with control media and Grnâˆ’/âˆ’ MCM (250 Î¼g/ml) (see Methods for specific algorithms). Nup98 is less evenly distributed in Grnâˆ’/âˆ’ cortical neurons in control media. When Grn+/+ neurons are treated with Grnâˆ’/âˆ’ MCM, they show significant uneven distribution of Nup98 compared to Grn+/+ neurons treated with control media. Interestingly, Grnâˆ’/âˆ’ neurons treated with Grnâˆ’/âˆ’ MCM do not show further defects in Nup98 distribution compared to Grnâˆ’/âˆ’ in control media. Data represent meanÂ Â±Â s.e.m. from 3 independent cultures. Statistics use two-way ANOVA. c, Average of Nup98 intensity in the small grids in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons treated with control media, Grn+/+ MCM and Grnâˆ’/âˆ’ MCM (250 Î¼g/ml). Data represent meanÂ Â±Â s.e.m. The numbers listed below each data set represent the number of neurons analysed from 3 independent cultures. Statistics uses two-tailed, unpaired Studentâ€™s t-test.


Extended Data Fig. 8 Overlap between TDP-43 granules in Grn+/+ and Grnâˆ’/âˆ’ neurons with lysosomal marker LAMP1, but not with the mitochondrial marker Tom20 and the stress granule marker ataxin-2.
aâ€“c, Confocal images of TDP-43 granules and LAMP1+ lysosomes (a), Tom20+ mitochondria (b), or ataxin-2+ stress granules (c) in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons treated with control media, Grn+/+ MCM and Grnâˆ’/âˆ’ MCM (250 Î¼g/ml). TDP-43 is shown in red and LAMP1, Tom20 and ataxin-2 in green. Intensity plots shown below confocal images are performed using the Nikon Intensity Profile System. Images were collected in the cytoplasm and dendrites. d, Immunogold electron microscopic images of TDP-43 granules in Grn+/+ and Grnâˆ’/âˆ’ neurons treated with control media, Grn+/+ MCM or Grnâˆ’/âˆ’ MCM (250 Î¼g/ml). The inset in the right lower panel shows a small spherical structure, which probably represent a cross-section of dendrite that contains many lysosomes with TDP-43 granules attached.


Extended Data Fig. 9 Sodium arsenite-induced TDP-43 granules in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons do not colocalize with G3BP1+ stress granules.
a, Sodium arsenite treatment (10 Î¼M, 1 h) induces prominent TDP-43 granules (red) and G3BP1+ granules (green) in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons. However, the TDP-43 granules and G3BP1+ granules show no evidence of colocalization in these neurons. b, Quantification using NIH ImageJ shows that the majority of TDP-43 granules are smaller than 0.05 Î¼m2. In contrast to Grnâˆ’/âˆ’ MCM treatment, sodium arsenite induces similar TDP-43 granule formation in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons. Images in panel a and quantification in panel b were obtained from four independent cultures. Data represent meanÂ Â±Â s.e.m. Statistics use two-way ANOVA with multiple comparisons. c, Immunogold electron microscopy (IEM) reveals that TDP-43 granules induced by sodium arsenite (500 Î¼M) have morphology similar to those in Grnâˆ’/âˆ’ thalamic neurons (Fig. 2d) and Grnâˆ’/âˆ’ cortical neurons treated with Grnâˆ’/âˆ’ MCM (Extended Data Fig. 8d). At least 8 IEM images were analysed from 2 independent cultures per condition. d, Grn+/+ and Grnâˆ’/âˆ’ cortical neurons are equally vulnerable to sodium arsenite treatment (10 Î¼M, 1 h). Data represent meanÂ Â±Â s.e.m. N indicates the number of independent cultures. Statistics use two-tailed, unpaired Studentâ€™s t-test. ns, not significant.


Extended Data Fig. 10 C1q and C3b produced by Grnâˆ’/âˆ’ microglia promote TDP-43 granule formation and cell death in Grnâˆ’/âˆ’ neurons.
a, Immunohistochemical images of Grn+/+, Grnâˆ’/âˆ’ and Grnâˆ’/âˆ’;C1qaâˆ’/âˆ’;C3âˆ’/âˆ’ mice at 7 months show the upregulation of C1q and C3b in the ventral thalamus of Grnâˆ’/âˆ’ mice. No C1q or C3b staining is detected in Grnâˆ’/âˆ’;C1qâˆ’/âˆ’;C3âˆ’/âˆ’ mouse brain, confirming the specificity of these antibodies. Insets in Grnâˆ’/âˆ’ panels represent higher magnification of the boxed regions in the ventral thalamus. Results were analysed in 3 mice per genotype. b, ELISA assays for C1q and C3b show increases of both proteins in Grnâˆ’/âˆ’ MCM, but no C1q or C3b is detected in Grnâˆ’/âˆ’;C1qaâˆ’/âˆ’;C3âˆ’/âˆ’ MCM. Data represent meanÂ Â±Â s.e.m. from 8 independent microglial cultures for Grn+/+ and Grnâˆ’/âˆ’ MCM, and 3 independent cultures from Grnâˆ’/âˆ’;C1qaâˆ’/âˆ’;C3âˆ’/âˆ’ MCM. Statistics use two-tailed, unpaired Studentâ€™s t-test. c, Confocal images of cultured Grn+/+ and Grnâˆ’/âˆ’ cortical neurons treated with purified human C1q (1 Î¼g/ml) or C1q+C3b (1 Î¼g/ml, each) indicate that complements are sufficient to promote the formation of TDP-43 granules in Grn+/+ and Grnâˆ’/âˆ’ cortical neurons, whereas Grnâˆ’/âˆ’;C1qaâˆ’/âˆ’;C3âˆ’/âˆ’ MCM fail to induce TDP-43 granule formation. d, Quantification of cytoplasmic TDP-43 intensity (upper panel) and cell death (lower panel) in Grn+/+ and Grnâˆ’/âˆ’ neurons treated with C1q, C1q+C3b and C4. N in the upper panel and the lower panel indicates the number of independent cultures analysed. On average, 6-8 images were obtained from each culture. Statistics use two-tailed, unpaired Studentâ€™s t-test. e, Quantification of cytoplasmic TDP-43 intensity (upper panel) and cell death (lower panel) in Grn+/+ and Grnâˆ’/âˆ’ neurons treated with control media, Grnâˆ’/âˆ’ MCM, Grnâˆ’/âˆ’;C1qaâˆ’/âˆ’ MCM or Grnâˆ’/âˆ’;C1qaâˆ’/âˆ’;C3âˆ’/âˆ’ MCM. Data represent meanÂ Â±Â s.e.m. Statistics use two-tailed, unpaired Studentâ€™s t-test. ns, not significant. N in the upper panel and the lower panel indicates the number of independent cultures analysed. On average, 6-8 images were obtained from each culture. f, Quantification of cell death of Grn+/+ and Grnâˆ’/âˆ’ neurons treated with Grnâˆ’/âˆ’ MCM (250 Î¼g/ml) and two different concentrations of vitronectin (50 or 500 ng/ml), an inhibitor of the complement membrane attack complex. Data represent meanÂ Â±Â s.e.m. Statistics uses two-tailed, unpaired Studentâ€™s t-test. ns, not significant. Data are obtained from 3 independent cultures.


Extended Data Fig. 11 Proposed model for the neurotoxic properties of Grnâˆ’/âˆ’ microglia in promoting neurodegeneration in Grnâˆ’/âˆ’ neurons.
Grnâˆ’/âˆ’ microglia show progressive transcriptomic changes from 7 to 12 months old. Based on gene burden analysis from snRNA-seq data, Grnâˆ’/âˆ’ microglia is the first cell cluster in the thalamus to show significant transcriptomic changes at 12 months. By 19 months, Grnâˆ’/âˆ’ microglia exhibit much more profound changes in their transcriptomes, affecting the expression of genes implicated in plasma membrane bounded cell projection, exocytosis, phagocytosis, protein complex assembly, ion homeostasis/transport, MAPK cascade and receptor tyrosine kinase signalling. Consistent with the snRNA-seq results, immunohistochemistry and in vitro cultures show that Grnâˆ’/âˆ’ microglia show marked reduction in proteins required for homeostasis, including Tmem119 and P2Y12, but have elevated expression of lysosomal and pro-inflammatory proteins, including Cathepsin B, ApoE, Adam33 and many others. Our results suggest that the lysosomal defects in Grnâˆ’/âˆ’ microglia may facilitate the production of complements, C1q and C3b, which promote the accumulation of nuclear and cytoplasmic TDP-43 granules, nuclear pore defects, and ultimately cell death in Grnâˆ’/âˆ’ neurons. Interestingly, while purified human C1q and C3b can promote TDP-43 granule formation and cell death in Grnâˆ’/âˆ’ neurons, these effects are less robust than in Grnâˆ’/âˆ’ MCM. These results suggest that Grnâˆ’/âˆ’ microglia may produce other unknown factors to facilitate neurodegeneration in Grnâˆ’/âˆ’ neurons. This model does not exclude the possibility that complements C1q and C3b may have cell-autonomous effects to activate Grnâˆ’/âˆ’ microglia.





Supplementary information
Supplementary Figure 1
Uncropped images for western blots of Cathepsin B, Myosin Va, Adam33, ATG7, Mef2c, Numb and GAPDH in Grn+/+ and Grn-/- P3 microglia. Uncropped images of western blots for several key up- or down-regulated genes in Grn-/- P3 microglia (P3-MG) presented in Extended Data Figure 5h. Each image contains 6 samples, including 3 from Grn+/+ P3-MG (left three lanes) and 3 from Grn-/- P3-MG (right three lanes). Each sample contains pools of primary microglia from two or more P3 mice, and therefore is considered as a biological replicate. Samples in different lanes are from different pools of microglia. The predicted molecular weight for each protein is presented on top of each panel, and the corresponding position of each protein on the western blot is indicated with an arrow.


Reporting Summary

Supplementary Table 1
Meta data for samples and cells in single-nucleus RNA-sequencing (snRNA-seq). This table contains information regarding the samples, the number of nuclei, and the number of reads from the snRNA-seq.


Supplementary Table 2
Pseudotime analyses of subclusters and subcluster-specific differentially expressed genes in Grn+/+ and Grn-/- thalamic microglia. This table contains information regarding the pseudotime trajectory analyses of Grn+/+ and Grn-/- thalamic microglia (Th-MG) using version 3 of Monocle R package. Supplementary Table 2A includes unique gene sets used to identify different subclusters in Grn+/+ and Grn-/- thalamic microglia (Th-MG). Supplementary Tables 2B and 2C contain the pseudotime trajectory analyses of the differentially expressed genes in each subcluster in Grn+/+ and Grn-/- Th-MG, respectively. Statistics in 2B and 2C were performed using Moranâ€™s I test.


Supplementary Table 3
Age-specific differentially expressed genes in Grn+/+ and Grn-/- thalamic microglia at 7, 12 and 19 months. This table contains the lists of differentially expressed genes (DEGs) in Grn-/- Th-MG at 7 months (Table 3A), 12 months (Table 3B) and 19 months (Table 3C). DEGs were analyzed using two different approaches. The first approach uses MAST and the second approach uses pseudobulk to generate DEGs. Detailed methods and statistics are provided in METHODS.


Supplementary Video 1
Time-lapse imaging of nuclear mCherry-TDP-43 in Grn+/+ neurons treated with control media. Grn+/+ cortical neurons from E15.5 embryos were transfected with pcDNA-mCherry-FLAG-TDP-43 plasmid. At 18 hours after the transfection, control media (250Î¼g/ml) was added to the neurons and time-laps images of nuclear m-Cherry-TDP-43 were captured for 14 hours at 10 minutes-intervals. Time-lapse sequences were acquired on a Yokogawa CSU-X1 spinning disk confocal microscope system with a Nikon 60x N.A. 1.49 objective and a Photometrics BSI Prime back-thinned sCMOS camera. A total of 15 Grn+/+ neurons treated with control media were imaged with similar results.


Supplementary Video 2
Time-lapse imaging of nuclear mCherry-TDP-43 in Grn+/+ neuron treated with Grn-/- MCM. Grn+/+ cortical neurons were transfected with pcDNA-mCherry-FLAG-TDP-43 plasmid. At 18 hours after the transfection, Grn-/- MCM (250Î¼g/ml) was added to the neurons and time-laps images of nuclear m-Cherry-TDP-43 were captured for 14 hours at 10 minutes-intervals. Four of 16 Grn+/+ neurons treated with Grn-/- MCM exhibited >3 folds increase in nuclear mCherry-TDP-43 signal at the end of recording compared with time 0â€™. Collectively, Grn+/+ neurons treated with Grn-/- MCM exhibited a modest, but not statistically significant, increase in nuclear m-Cherry-TDP-43 signals.


Supplementary Video 3
Time-lapse imaging of nuclear mCherry-TDP-43 in Grn-/- neuron treated with control media. Grn-/- cortical neurons were transfected with pcDNA-mCherry-FLAG-TDP-43 plasmid. At 18 hours after the transfection, control media (250Î¼g/ml) was added to the neurons and time-laps images of nuclear m-Cherry-TDP-43 were captured for 14 hours at 10 minutes-intervals. A total of 11 Grn-/- neurons treated with control media were recorded.


Supplementary Video 4
Time-lapse imaging of nuclear mCherry-TDP-43 in Grn-/- neuron treated with Grn-/- MCM. Grn-/- cortical neurons were transfected with pcDNA-mCherry-FLAG-TDP-43 plasmid. At 18 hours after the transfection, Grn-/- MCM (250Î¼g/ml) was added to the neurons and time-laps images of nuclear m-Cherry-TDP-43 were captured for 14 hours at 10 minutes-intervals. Five of 17 Grn-/- neurons treated with Grn-/- MCM exhibited >5 folds increase, whereas 12 showed variable increases in nuclear m-Cherry-TDP-43 signals at the end of recording compared with time 0â€™. Overall, Grn-/- neurons treated with Grn-/- MCM exhibited significantly higher nuclear mCherry-TDP-43 signals.


Supplementary Video 5
Time-lapse imaging of nuclear and cytoplasmic mCherry-TDP-43 in Grn-/- neuron treated with Grn-/- MCM. Of the 17 Grn-/- cortical neurons treated with transfected with Grn-/- MCM, 5 showed extension of mCherry-TDP43 from the nucleus into the cytoplasm. Supplementary Video 5 represents one of such Grn-/- cortical neurons. Several of Grn-/- neurons with extension of nuclear mCherry-TDP-43 into the cytoplasm eventually died at or near the end of recording.
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