Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of superconducting diode effect


Nonlinear optical and electrical effects associated with a lack of spatial inversion symmetry allow direction-selective propagation and transport of quantum particles, such as photons1 and electrons2,3,4,5,6,7,8,9. The most common example of such nonreciprocal phenomena is a semiconductor diode with a p–n junction, with a low resistance in one direction and a high resistance in the other. Although the diode effect forms the basis of numerous electronic components, such as rectifiers, alternating–direct-current converters and photodetectors, it introduces an inevitable energy loss due to the finite resistance. Therefore, a worthwhile goal is to realize a superconducting diode that has zero resistance in only one direction. Here we demonstrate a magnetically controllable superconducting diode in an artificial superlattice [Nb/V/Ta]n without a centre of inversion. The nonreciprocal resistance versus current curve at the superconducting-to-normal transition was clearly observed by a direct-current measurement, and the difference of the critical current is considered to be related to the magnetochiral anisotropy caused by breaking of the spatial-inversion and time-reversal symmetries10,11,12,13. Owing to the nonreciprocal critical current, the [Nb/V/Ta]n superlattice exhibits zero resistance in only one direction. This superconducting diode effect enables phase-coherent and direction-selective charge transport, paving the way for the construction of non-dissipative electronic circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Demonstration of the magnetically controllable superconducting diode.
Fig. 2: Asymmetric RI curves and the nonreciprocal critical currents in the [Nb/V/Ta]n superlattice.
Fig. 3: Nonreciprocal charge transport during the superconducting transition in the [Nb/V/Ta]n superlattice.
Fig. 4: Magnetochiral anisotropy of the [Nb/V/Ta]n superlattice.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.


  1. 1.

    Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Braun, F. Ueber die Stromleitung durch Schwefelmetalls. Ann. Phys. 153, 556–563 (1874).

    Google Scholar 

  3. 3.

    Rikken, G. L. J. A. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Rikken, G. L. J. A. Magnetoelectric anisotropy in diffusive transport. Phys. Rev. Lett. 94, 016601 (2005).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Pop, F., Auban-senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Morimoto, T. & Nagaosa, N. Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Tokura, Y. & Nagaosa, N. Nonreciprocal responses from noncentrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Choe, D. et al. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat. Commun. 10, 4510 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Qin, F. et al. Superconductivity in a chiral nanotube. Nat. Commun. 8, 14465 (2017).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Yasuda, K. et al. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 10, 2734 (2019).

    ADS  Article  Google Scholar 

  13. 13.

    Hoshino, S., Wakatsuki, R., Hamamoto, K. & Nagaosa, N. Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors. Phys. Rev. B 98, 054510 (2018).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Bychkov, Y. A. & Rashba, I. E. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    ADS  Google Scholar 

  15. 15.

    LaShell, S., Mcdougall, B. A. & Jensen, E. Spin splitting of an Au (111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Lustikova, J. et al. Vortex rectenna powered by environmental fluctuations. Nat. Commun. 9, 4922 (2018).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Pradipto, A. et al. Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling. Phys. Rev. B 99, 180410 (2019).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Nishimura, T. et al. Fabrication of ferrimagnetic Co/Gd/Pt multilayers with structural inversion symmetry breaking. J. Magn. Soc. Jpn 44, 9–14 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Ando, F. et al. Fabrication of noncentrosymmetric Nb/V/Ta superlattice and its superconductivity. J. Magn. Soc. Jpn 43, 17–20 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    Wakatsuki, R. & Nagaosa, N. Nonreciprocal current in noncentrosymmetric Rashba superconductors. Phys. Rev. Lett. 121, 026601 (2018).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Yip, S. Noncentrosymmetric superconductors. Annu. Rev. Condens. Matter Phys. 5, 15–33 (2014).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Bauer, E. & Sigrist, M. Non-Centrosymmetric Superconductors: Introduction and Overview (Springer, 2012).

  24. 24.

    Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    ADS  Article  Google Scholar 

  25. 25.

    Frigeri, P., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Fujimoto, S. Electron correlation and pairing states in superconductors without inversion symmetry. J. Phys. Soc. Jpn 76, 051008 (2007).

    ADS  Article  Google Scholar 

  27. 27.

    Yanase, Y. & Sigrist, M. Superconductivity and magnetism in non-centrosymmetric system: application to CePt3Si. J. Phys. Soc. Jpn 77, 124711 (2008).

    ADS  Article  Google Scholar 

  28. 28.

    Smidman, M., Salamon, M. B., Yuan, H. Q. & Agterberg, D. F. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review. Rep. Prog. Phys. 80, 036501 (2017).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Edelstein, V. M. Characteristics of the Cooper pairing in two-dimensional noncentrosymmetric electron systems. [Sov. Phys. JETP 68, 1244 (1989)] Zh. Eksp. Teor. Fiz. 95, 2151 (1989).

    Google Scholar 

  30. 30.

    Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).

    ADS  Article  Google Scholar 

  31. 31.

    Blaha, P. et al. WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, 2018).

  32. 32.

    Blaha, P. et al. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    CAS  Article  Google Scholar 

  33. 33.

    Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field, H c2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966).

    ADS  CAS  Article  Google Scholar 

Download references


We thank Y. Kasahara, Y. Matsuda and K. Ishida for discussions about the superconducting properties of the [Nb/V/Ta]n superlattice. This work was supported partly by JSPS KAKENHI grants (15H05702, 15H05884, 15H05745, 17H04924, 18K19021, 18H04225, 18H01178, 18H05227, 18H01815, 19K21972 and 26103002), by the Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University, and by the Collaborative Research Program of the Institute for Chemical Research, Kyoto University.

Author information




T.O. supervised the study. F.A. and Y.M. deposited the films and fabricated them into the devices. F.A. designed the transport measurement setup with help from T.L. and collected the data. T.A. reproduced the experimental results of the superconducting diode effect in another cryogenic equipment. J.I. and Y.Y. calculated the band structure and helped with the analysis of the experimental results. All authors contributed to the interpretation of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Teruo Ono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Band structure of a slab of [Nb/V/Ta]5.

a, Band structure of a slab [Nb/V/Ta]5 along the high-symmetry line. b, Low-energy electron band near the M point.

Extended Data Fig. 2 The nonreciprocal component of the critical current ΔIc as a function of magnetic field in a 120-nm-thick Nb film.

The inset shows the temperature dependence of the d.c. sheet resistance.

Extended Data Fig. 3 First-harmonic sheet resistances Rω of the [Nb/V/Ta]n superlattice as a function of magnetic field in the vicinity of Tc.

The temperature dependence of the critical field Bc2 is shown in the inset.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ando, F., Miyasaka, Y., Li, T. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing