Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dynamically cold disk galaxy in the early Universe

A Publisher Correction to this article was published on 22 August 2020

This article has been updated

Abstract

The extreme astrophysical processes and conditions that characterize the early Universe are expected to result in young galaxies that are dynamically different from those observed today1,2,3,4,5. This is because the strong effects associated with galaxy mergers and supernova explosions would lead to most young star-forming galaxies being dynamically hot, chaotic and strongly unstable1,2. Here we report the presence of a dynamically cold, but highly star-forming, rotating disk in a galaxy at redshift6 z = 4.2, when the Universe was just 1.4 billion years old. Galaxy SPT–S J041839–4751.9 is strongly gravitationally lensed by a foreground galaxy at z = 0.263, and it is a typical dusty starburst, with global star-forming7 and dust properties8 that are in agreement with current numerical simulations9 and observations10. Interferometric imaging at a spatial resolution of about 60 parsecs reveals a ratio of rotational to random motions of 9.7 ± 0.4, which is at least four times larger than that expected from any galaxy evolution model at this epoch1,2,3,4,5 but similar to the ratios of spiral galaxies in the local Universe11. We derive a rotation curve with the typical shape of nearby massive spiral galaxies, which demonstrates that at least some young galaxies are dynamically akin to those observed in the local Universe, and only weakly affected by extreme physical processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: [C ii] emission from the lensed galaxy SPT0418-47 and source plane reconstruction.
Fig. 2: Kinematic and dynamical properties of SPT0418-47.
Fig. 3: Comparison between SPT0418-47 and samples of observed and simulated galaxies.
Fig. 4: Comparison between SPT0418-47 and samples of its plausible descendants.

Similar content being viewed by others

Data availability

This study used the ALMA data 2016.1.01499.S, available at http://almascience.eso.org/aq/.

Code availability

The methodology used for the source reconstruction and its kinematic modelling is fully explained in ref. 13. The code is available from the corresponding author upon reasonable request.

Change history

References

  1. Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    ADS  CAS  Google Scholar 

  2. Dekel, A. & Burkert, A. Wet disc contraction to galactic blue nuggets and quenching to red nuggets. Mon. Not. R. Astron. Soc. 438, 1870–1879 (2014).

    ADS  Google Scholar 

  3. Zolotov, A. et al. Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets. Mon. Not. R. Astron. Soc. 450, 2327–2353 (2015).

    ADS  CAS  Google Scholar 

  4. Krumholz, M. R., Burkhart, B., Forbes, J. C. & Crocker, R. M. A unified model for galactic discs: star formation, turbulence driving, and mass transport. Mon. Not. R. Astron. Soc. 477, 2716–2740 (2018).

    ADS  CAS  Google Scholar 

  5. Hayward, C. C. & Hopkins, P. F. How stellar feedback simultaneously regulates star formation and drives outflows. Mon. Not. R. Astron. Soc. 465, 1682–1698 (2017).

    ADS  CAS  Google Scholar 

  6. Weiß, A. et al. ALMA redshifts of millimeter-selected galaxies from the SPT survey: the redshift distribution of dusty star-forming galaxies. Astrophys. J. 767, 88 (2013).

    ADS  Google Scholar 

  7. De Breuck, C. et al. A dense, solar metallicity ISM in the z= 4.2 dusty star-forming galaxy SPT 0418–47. Astron. Astrophys. 631, A167 (2019).

    Google Scholar 

  8. Gullberg, B. et al. The nature of the [C ii] emission in dusty star-forming galaxies from the SPT survey. Mon. Not. R. Astron. Soc. 449, 2883–2900 (2015).

    ADS  CAS  Google Scholar 

  9. McAlpine, S. et al. The nature of sub-millimeter and highly star-forming galaxies in the EAGLE simulation. Mon. Not. R. Astron. Soc. 488, 2440–2454 (2019).

    ADS  CAS  Google Scholar 

  10. Hodge, J. A. et al. The kiloparsec-scale star formation law at redshift 4: widespread, highly efficient star formation in the dust-obscured starburst galaxy GN20. Astrophys. J. Lett. 798, 18 (2015).

    ADS  Google Scholar 

  11. Lelli, F., McGaugh, S. S. & Schombert, J. M. SPARC: mass models for 175 disk galaxies with spitzer photometry and accurate rotation curves. Astron. J. 152, 157 (2016).

    ADS  Google Scholar 

  12. Stacey, G. J. et al. A 158 μm [C ii] line survey of galaxies at z~ 1–2: an indicator of star formation in the early Universe. Astrophys. J. 724, 957–974 (2010).

    ADS  CAS  Google Scholar 

  13. Rizzo, F., Vegetti, S., Fraternali, F. & Di Teodoro, E. A novel 3D technique to study the kinematics of lensed galaxies. Mon. Not. R. Astron. Soc. 481, 5606–5629 (2018).

    ADS  CAS  Google Scholar 

  14. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

    ADS  Google Scholar 

  15. Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).

    ADS  CAS  Google Scholar 

  16. Chen, C.-C. et al. An ALMA survey of submillimeter galaxies in the Extended Chandra Deep Field South: near-infrared morphologies and stellar sizes. Astrophys. J. 799, 194 (2015).

    ADS  Google Scholar 

  17. Lang, P. et al. Bulge growth and quenching since z = 2.5 in CANDELS/3D-HST. Astrophys. J. 788, 11 (2014).

    ADS  Google Scholar 

  18. Krajnović, D. et al. The ATLAS3D project – XVII. Linking photometric and kinematic signatures of stellar discs in early-type galaxies. Mon. Not. R. Astron. Soc. 432, 1768–1795 (2013).

    ADS  Google Scholar 

  19. Toft, S. et al. Submillimeter galaxies as progenitors of compact quiescent galaxies. Astrophys. J. 782, 68 (2014).

    ADS  Google Scholar 

  20. Barro, G. et al. CANDELS+3D-HST: compact SFGs at z ~ 2–3, the progenitors of the first quiescent galaxies. Astrophys. J. 791, 52 (2014).

    ADS  Google Scholar 

  21. Cappellari, M. et al. The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria. Mon. Not. R. Astron. Soc. 413, 813–836 (2011).

    ADS  CAS  Google Scholar 

  22. McDermid, R. M. et al. The ATLAS3D Project – XXX. Star formation histories and stellar population scaling relations of early-type galaxies. Mon. Not. R. Astron. Soc. 448, 3484–3513 (2015).

    ADS  CAS  Google Scholar 

  23. Naab, T., Johansson, P. H. & Ostriker, J. P. Minor mergers and the size evolution of elliptical galaxies. Astrophys. J. Lett. 699, 178–182 (2009).

    ADS  Google Scholar 

  24. Cappellari, M. et al. The ATLAS3D project – XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. Mon. Not. R. Astron. Soc. 432, 1862–1893 (2013).

    ADS  CAS  Google Scholar 

  25. Di Teodoro, E. M., Fraternali, F. & Miller, S. H. Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ~ 1. Astron. Astrophys. 594, A77 (2016).

    Google Scholar 

  26. Wisnioski, E. et al. The KMOS3D survey: design, first results, and the evolution of galaxy kinematics from 0.7 ≤ z ≤ 2.7. Astrophys. J. 799, 209 (2015).

    ADS  Google Scholar 

  27. Lelli, F. et al. Neutral versus ionized gas kinematics at z2.6: the AGN-host starburst galaxy PKS 0529–549. Mon. Not. R. Astron. Soc. 479, 5440–5447 (2018).

    ADS  CAS  Google Scholar 

  28. Turner, O. J. et al. The KMOS Deep Survey (KDS) - I. Dynamical measurements of typical star-forming galaxies at z 3.5. Mon. Not. R. Astron. Soc. 471, 1280–1320 (2017).

    ADS  CAS  Google Scholar 

  29. Harrison, C. M. et al. The KMOS Redshift One Spectroscopic Survey (KROSS): rotational velocities and angular momentum of z ≈ 0.9 galaxies. Mon. Not. R. Astron. Soc. 467, 1965–1983 (2017).

    ADS  CAS  Google Scholar 

  30. Swinbank, A. M. et al. Angular momentum evolution of galaxies over the past 10 Gyr: a MUSE and KMOS dynamical survey of 400 star-forming galaxies from z = 0.3 to 1.7. Mon. Not. R. Astron. Soc. 467, 3140–3159 (2017).

    ADS  CAS  Google Scholar 

  31. Carlstrom, J. E. et al. The 10 meter South Pole Telescope. Publ. Astron. Soc. Pacif. 123, 568–581 (2011).

    ADS  Google Scholar 

  32. Vieira, J. D. et al. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature 495, 344–347 (2013).

    ADS  CAS  PubMed  Google Scholar 

  33. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).

    ADS  Google Scholar 

  34. Högbom, J. A. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser. 15, 417–426 (1974).

    ADS  Google Scholar 

  35. Powell, D., Vegetti, S., McKean, J. P. & Spingola, C. A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution. Preprint at https://arxiv.org/abs/2005.03609 (2020).

  36. Vegetti, S. & Koopmans, L. V. E. Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies. Mon. Not. R. Astron. Soc. 392, 945–963 (2009).

    ADS  Google Scholar 

  37. Greengard, L. & Lee, J.-Y. Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46, 443–454 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  38. Beatty, P. J., Nishimura, D. G. & Pauly, J. M. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans. Med. Imaging 24, 799–808 (2005).

    PubMed  Google Scholar 

  39. Koopmans, L. V. E., Treu, T., Bolton, A. S., Burles, S. & Moustakas, L. A. The Sloan Lens ACS Survey. III. The structure and formation of early-type galaxies and their evolution since z~1. Astrophys. J. 649, 599–615 (2006).

    ADS  Google Scholar 

  40. Barnabè, M. et al. Two-dimensional kinematics of SLACS lenses – II. Combined lensing and dynamics analysis of early-type galaxies at z=0.08–0.33. Mon. Not. R. Astron. Soc. 399, 21–36 (2009).

    ADS  Google Scholar 

  41. Spilker, J. S. et al. ALMA imaging and gravitational lens models of south pole telescope—selected dusty, star-forming galaxies at high redshifts. Astrophys. J. 826, 112 (2016).

    ADS  Google Scholar 

  42. Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astr. 2, 10 (2019).

    Google Scholar 

  43. Di Teodoro, E. M. & Fraternali, F. 3DBAROLO: a new 3D algorithm to derive rotation curves of galaxies. Mon. Not. R. Astron. Soc. 451, 3021–3033 (2015).

    ADS  Google Scholar 

  44. Jones, G. C. et al. Dynamical characterization of galaxies at z~ 4–6 via tilted ring fitting to ALMA [C ii] observations. Astrophys. J. 850, 180 (2017).

    ADS  Google Scholar 

  45. Smit, R. et al. Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8. Nature 553, 178–181 (2018).

    ADS  CAS  PubMed  Google Scholar 

  46. Übler, H. et al. Ionized and molecular gas kinematics in a z=1.4 star-forming galaxy. Astrophys. J. 854, L24 (2018).

    ADS  Google Scholar 

  47. Girard, M. et al. Towards sub-kpc scale kinematics of molecular and ionized gas of star-forming galaxies at z~1. Astron. Astrophys. 631, A91 (2019).

    CAS  Google Scholar 

  48. Übler, H. et al. The evolution and origin of ionized gas velocity dispersion from z~2.6 to z~0.6 with KMOS3D. Astrophys. J. 880, 48 (2019).

    ADS  Google Scholar 

  49. Hung, C.-L. et al. What drives the evolution of gas kinematics in star-forming galaxies? Mon. Not. R. Astron. Soc. 482, 5125–5137 (2019).

    ADS  CAS  Google Scholar 

  50. Teklu, A. F. et al. Declining rotation curves at z=2 in ΛCDM galaxy formation simulations. Astrophys. J. 854, L28 (2018).

    ADS  Google Scholar 

  51. Bird, J. C. et al. Inside out and upside down: tracing the assembly of a simulated disk galaxy using mono-age stellar populations. Astrophys. J. 773, 43 (2013).

    ADS  Google Scholar 

  52. Martizzi, D. Global simulations of galactic discs: violent feedback from clustered supernovae during bursts of star formation. Mon. Not. R. Astron. Soc. 492, 79–95 (2020).

    ADS  Google Scholar 

  53. Iorio, G. et al. LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies. Mon. Not. R. Astron. Soc. 466, 4159–4192 (2017).

    ADS  CAS  Google Scholar 

  54. Lima Neto, G. B., Gerbal, D. & Márquez, I. The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators? Mon. Not. R. Astron. Soc. 309, 481–495 (1999).

    ADS  Google Scholar 

  55. Terzić, B. & Graham, A. W. Density-potential pairs for spherical stellar systems with Sérsic light profiles and (optional) power-law cores. Mon. Not. R. Astron. Soc. 362, 197–212 (2005).

    ADS  Google Scholar 

  56. Zanella, A. et al. The [C ii] emission as a molecular gas mass tracer in galaxies at low and high redshifts. Mon. Not. R. Astron. Soc. 481, 1976–1999 (2018).

    ADS  CAS  Google Scholar 

  57. Gullberg, B. et al. The dust and [C ii] morphologies of redshift ~4.5 sub-millimeter galaxies at ~200 pc resolution: the absence of large clumps in the interstellar medium at high-redshift. Astrophys. J. 859, 12 (2018).

    ADS  Google Scholar 

  58. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

    ADS  CAS  Google Scholar 

  59. Dutton, A. A. & Macciò, A. V. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc. 441, 3359–3374 (2014).

    ADS  Google Scholar 

  60. Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Preprint at https://arxiv.org/abs/1904.02180 (2019).

  61. Cappellari, M. et al. The ATLAS3D project – XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane. Mon. Not. R. Astron. Soc. 432, 1709–1741 (2013).

    ADS  Google Scholar 

  62. Emsellem, E. et al. The ATLAS3D project – III. A census of the stellar angular momentum within the effective radius of early-type galaxies: unveiling the distribution of fast and slow rotators. Mon. Not. R. Astron. Soc. 414, 888–912 (2011).

    ADS  Google Scholar 

  63. Aravena, M. et al. A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z>2. Mon. Not. R. Astron. Soc. 457, 4406–4420 (2016).

    ADS  CAS  Google Scholar 

  64. Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).

    ADS  CAS  Google Scholar 

  65. Tamburro, D. et al. What is driving the H i velocity dispersion? Astrophys. J. 137, 4424–4435 (2009).

    CAS  Google Scholar 

  66. Utomo, D., Blitz, L. & Falgarone, E. The origin of interstellar turbulence in M33. Astrophys. J. 871, 17 (2019).

    ADS  CAS  Google Scholar 

  67. Rafelski, M. et al. The star formation rate efficiency of neutral atomic-dominated hydrogen gas in the outskirts of star-forming galaxies from z~1 to z~3. Astrophys. J. 825, 87 (2016).

    ADS  Google Scholar 

  68. Leroy, A. K. et al. The multi-phase cold fountain in M82 revealed by a wide, sensitive map of the molecular interstellar medium. Astrophys. J. 814, 83 (2015).

    ADS  Google Scholar 

  69. Lelli, F., Verheijen, M. & Fraternali, F. Dynamics of starbursting dwarf galaxies. III. A H I study of 18 nearby objects. Astron. Astrophys. 566, A71 (2014).

    ADS  Google Scholar 

  70. Planck Collaboration. Planck 2015 results XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

Download references

Acknowledgements

This study used ALMA data 2016.1.01499.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan) with NRC (Canada), NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. S.V. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 758853). F.R. thanks T. Naab and T. Costa for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.R., F.F. and S.V. analysed the data. D.P., F.R. and S.V. developed the software used for the lens–kinematic modelling. F.R. developed the software for the dynamical analysis. H.R.S. and F.R. reduced the data. F.R., J.P.M., S.V. and H.R.S. contributed to the writing of the manuscript. F.F. and S.D.M.W. helped with the interpretation of the scientific results. All authors discussed the results and provided comments on the paper.

Corresponding author

Correspondence to F. Rizzo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Reconstruction of the [C ii] emission and kinematic model.

The rows show representative channel maps at the velocity shown on the upper left corner of column 4. Columns 1 and 2 show the ‘dirty’ image of the data and the model, respectively, colour-coded by the flux in units of mJy per beam. Column 3 shows the residuals (data minus model) normalized to the noise. Columns 5 and 6 show the contours of the reconstructed source and of the kinematic model used to constrain the source reconstruction. The contour levels in the last columns are set at n = 0.1, 0.2, 0.4, 0.6, 0.8 times the value of the maximum flux of the kinematic model.

Extended Data Fig. 2 Corner plot showing the posterior distributions of the lens and kinematic parameters.

The dark and light areas in the two-dimensional distributions show the 39% and 86% confidence levels, corresponding to 1 s.d. and 2 s.d., respectively, obtained with the fiducial methodology described in Rizzo et al.13 (green) and with the direct forward modelling method (grey). From left to right, the first six panels show the lens parameters, and the other panels show the source kinematic parameters (see also Extended Data Table 1).

Extended Data Fig. 3 Corner plot showing the posterior distributions of the dynamical parameters.

The posterior distributions are the results of the decomposition of the circular velocity (Fig. 2c) into the physical components contributing to the total gravitational potential: the stars, the gas disks and the dark-matter halo. The fitted parameters are the stellar mass Mstar, the effective radius, Re, the Sérsic index, n (Sérsic profile), the mass of an NFW dark-matter halo, MDM and the conversion factor between the [C ii] luminosity and the gas mass, α[Cii]. The dashed lines in the one-dimensional histograms show the 16th, 50th and 84th percentiles (see Extended Data Table 5).

Extended Data Table 1 Lens and source kinematic parameters
Extended Data Table 2 Kinematic properties for SPT0418-47 derived under different assumptions
Extended Data Table 3 Kinematic measurements for the comparison samples
Extended Data Table 4 Assumptions for the dynamical fit
Extended Data Table 5 Physical quantities for SPT0418-47 derived from the kinematic and dynamical modelling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzo, F., Vegetti, S., Powell, D. et al. A dynamically cold disk galaxy in the early Universe. Nature 584, 201–204 (2020). https://doi.org/10.1038/s41586-020-2572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2572-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing