Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling dinitrogen and hydrocarbons through aryl migration

An Author Correction to this article was published on 18 September 2020

This article has been updated

Abstract

The activation of abundant molecules such as hydrocarbons and atmospheric nitrogen (N2) remains a challenge because these molecules are often inert. The formation of carbon–nitrogen bonds from N2 typically has required reactive organic precursors that are incompatible with the reducing conditions that promote N2 reactivity1, which has prevented catalysis. Here we report a diketiminate-supported iron system that sequentially activates benzene and N2 to form aniline derivatives. The key to this coupling reaction is the partial silylation of a reduced iron–dinitrogen complex, followed by migration of a benzene-derived aryl group to the nitrogen. Further reduction releases N2-derived aniline, and the resulting iron species can re-enter the cyclic pathway. Specifically, we show that an easily prepared diketiminate iron bromide complex2 mediates the one-pot conversion of several petroleum-derived arenes into the corresponding silylated aniline derivatives, by using a mixture of sodium powder, crown ether, trimethylsilyl bromide and N2 as the nitrogen source. Numerous compounds along the cyclic pathway are isolated and crystallographically characterized, and their reactivity supports a mechanism for sequential hydrocarbon activation and N2 functionalization. This strategy couples nitrogen atoms from N2 with abundant hydrocarbons, and maps a route towards future catalytic systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Strategy for converting benzene and N2 into silylated aniline without the use of carbon electrophiles.
Fig. 2: Activation of benzene.
Fig. 3: Binding and functionalization of N2.
Fig. 4: Proposed cyclic reaction mechanism for the conversion of N2 and benzene to aniline, mediated by iron β-diketiminate complexes.
Fig. 5: Aniline products from amination of arenes with N2.

Data availability

Materials and methods, experimental procedures, useful information, spectra and mass spectrometry data are available in Supplementary Information. Raw data are available from the corresponding author on reasonable request. The crystallographic datasets generated during the current study are publicly available from the Cambridge Crystallographic Data Centre (CCDC) repository at https://www.ccdc.cam.ac.uk/structures/ with CCDC numbers 1937999, 1978000, 1938001, 1938002, 1939265, 1939266 and 1966313.

Change history

References

  1. 1.

    Kim, S., Loose, F. & Chirik, P. J. Beyond ammonia: nitrogen-element bond forming reactions with coordinated dinitrogen. Chem. Rev. 120, 5637–5681 (2020).

    CAS  PubMed  Google Scholar 

  2. 2.

    McWilliams, S. F. et al. Effects of N2 binding mode on iron-based functionalization of dinitrogen to form an iron(iii) hydrazido complex. J. Am. Chem. Soc. 140, 8586–8598 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Schlögl, R. in Handbook of Heterogeneous Catalysis Vol. 5 2501–2575 (Wiley, 2008).

  4. 4.

    Burgess, B. K. & Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983–3012 (1996).

    CAS  PubMed  Google Scholar 

  5. 5.

    Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chalkley, M. J., Del Castillo, T. J., Matson, B. D., Roddy, J. P. & Peters, J. C. Catalytic N2-to-NH3 conversion by Fe at lower driving force: a proposed role for metallocene-mediated PCET. ACS Cent. Sci. 3, 217–223 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Nishibayashi, Y. Development of catalytic nitrogen fixation using transition metal-dinitrogen complexes under mild reaction conditions. Dalton Trans. 47, 11290–11297 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Andino, J. G., Mazumder, S., Pal, K. & Caulton, K. G. New approaches to functionalizing metal-coordinated N2. Angew. Chem. Int. Ed. 52, 4726–4732 (2013).

    CAS  Google Scholar 

  11. 11.

    Hidai, M. & Mizobe, Y. Recent advances in the chemistry of dinitrogen complexes. Chem. Rev. 95, 1115–1133 (1995).

    CAS  Google Scholar 

  12. 12.

    MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–402 (2004).

    CAS  PubMed  Google Scholar 

  13. 13.

    Mori, M. Activation of nitrogen for organic synthesis. J. Organomet. Chem. 689, 4210–4227 (2004).

    CAS  Google Scholar 

  14. 14.

    Keane, A. J., Farrell, W. S., Yonke, B. L., Zavalij, P. Y. & Sita, L. R. Metal-mediated production of isocyanates, R3ENCO from dinitrogen, carbon dioxide, and R3ECl. Angew. Chem. Int. Ed. 54, 10220–10224 (2015).

    CAS  Google Scholar 

  15. 15.

    Figueroa, J. S., Piro, N. A., Clough, C. R. & Cummins, C. C. A nitridoniobium(v) reagent that effects acid chloride to organic nitrile conversion: synthesis via heterodinuclear (Nb/Mo) dinitrogen cleavage, mechanistic insights, and recycling. J. Am. Chem. Soc. 128, 940–950 (2006).

    CAS  PubMed  Google Scholar 

  16. 16.

    Curley, J. J., Cozzolino, A. F. & Cummins, C. C. Nitrogen fixation to cyanide at a molybdenum center. Dalton Trans. 40, 2429–2432 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Klopsch, I., Kinauer, M., Finger, M., Würtele, C. & Schneider, S. Conversion of dinitrogen into acetonitrile under ambient conditions. Angew. Chem. Int. Ed. 55, 4786–4789 (2016).

    CAS  Google Scholar 

  18. 18.

    Kakiuchi, F. & Chatani, N. Catalytic methods for C-H bond functionalization: application in organic synthesis. Adv. Synth. Catal. 345, 1077–1101 (2003).

    CAS  Google Scholar 

  19. 19.

    Davies, H. M. L., Du Bois, J. & Yu, J.-Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Smith, J. M. et al. Studies of low-coordinate iron dinitrogen complexes. J. Am. Chem. Soc. 128, 756–769 (2006).

    CAS  PubMed  Google Scholar 

  21. 21.

    Holland, P. L. Electronic structure and reactivity of three-coordinate iron complexes. Acc. Chem. Res. 41, 905–914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kalman, S. E. et al. Facile and regioselective C–H bond activation of aromatic substrates by an Fe(ii) complex involving a spin-forbidden pathway. Organometallics 32, 1797–1806 (2013).

    CAS  Google Scholar 

  23. 23.

    Hickey, A. K., Lutz, S. A., Chen, C.-H. & Smith, J. M. Two-state reactivity in C–H activation by a four-coordinate iron(0) complex. Chem. Commun. 53, 1245–1248 (2017).

    CAS  Google Scholar 

  24. 24.

    Yu, Y., Brennessel, W. W. & Holland, P. L. Borane B−C bond cleavage by a low-coordinate iron hydride complex and N−N bond cleavage by the hydridoborate product. Organometallics 26, 3217–3226 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sellmann, D. & Weiss, W. First reaction of dinitrogen ligands with bases: reduction of coordinated dinitrogen by nucleophilic attack. Angew. Chem. 89, 918–919 (1977).

    CAS  Google Scholar 

  26. 26.

    Sellmann, D. & Weiss, W. Consecutive nucleophilic and electrophilic attack on nitrogen ligands: synthesis of azomethane from molecular nitrogen. Angew. Chem. 90, 295–296 (1978).

    CAS  Google Scholar 

  27. 27.

    Deegan, M. M. & Peters, J. C. Electrophile-promoted Fe-to-N2 hydride migration in highly reduced Fe(N2)(H) complexes. Chem. Sci. 9, 6264–6270 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Jacobs, B. P., Wolczanski, P. T., Jiang, Q., Cundari, T. R. & MacMillan, S. N. Rare examples of Fe(iv) alkyl-imide migratory insertions: impact of Fe–C covalency in (Me2IPr)Fe(=NAd)R2. J. Am. Chem. Soc. 139, 12145–12148 (2017).

    CAS  PubMed  Google Scholar 

  29. 29.

    Nishibayashi, Y. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. Inorg. Chem. 54, 9234–9247 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Siedschlag, R. B. et al. Catalytic silylation of dinitrogen with a dicobalt complex. J. Am. Chem. Soc. 137, 4638–4641 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Piascik, A. D., Li, R., Wilkinson, H. J., Green, J. C. & Ashley, A. E. Fe-catalyzed conversion of N2 to N(SiMe3)3 via an Fe-hydrazido resting state. J. Am. Chem. Soc. 140, 10691–10694 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Tanabe, Y. & Nishibayashi, Y. Recent advances in catalytic silylation of dinitrogen using transition metal complexes. Coord. Chem. Rev. 389, 73–93 (2019).

    CAS  Google Scholar 

  33. 33.

    Lee, Y., Mankad, N. P. & Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat. Chem. 2, 558–565 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tanaka, H. et al. Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. J. Am. Chem. Soc. 133, 3498–3506 (2011).

    CAS  PubMed  Google Scholar 

  35. 35.

    Yuki, M. et al. Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. Nat. Commun. 3, 1254 (2012).

    ADS  PubMed  Google Scholar 

  36. 36.

    Liao, Q., Saffon-Merceron, N. & Mézailles, N. N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study. ACS Catal. 5, 6902–6906 (2015).

    CAS  Google Scholar 

  37. 37.

    Liao, Q., Cavaillé, A., Saffon-Merceron, N. & Mézailles, N. Direct synthesis of silylamine from N2 and a silane mediated by a tridentate phosphine molybdenum fragment. Angew. Chem. Int. Ed. 55, 11212–11216 (2016).

    CAS  Google Scholar 

  38. 38.

    Prokopchuk, D. E. et al. Catalytic N2 reduction to silylamines and thermodynamics of N2 binding at square planar Fe. J. Am. Chem. Soc. 139, 9291–9301 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Suzuki, T. et al. Efficient catalytic conversion of dinitrogen to N(SiMe3)3 using a homogeneous mononuclear cobalt complex. ACS Catal. 8, 3011–3015 (2018).

    CAS  Google Scholar 

  40. 40.

    Ferreira, R. B. et al. Catalytic silylation of dinitrogen by a family of triiron complexes. ACS Catal. 8, 7208–7212 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Gómez-Gallego, M. & Sierra, M. A. Kinetic isotope effects in the study of organometallic reaction mechanisms. Chem. Rev. 111, 4857–4963 (2011).

    PubMed  Google Scholar 

  42. 42.

    Betley, T. A. & Peters, J. C. Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. J. Am. Chem. Soc. 125, 10782–10783 (2003).

    CAS  PubMed  Google Scholar 

  43. 43.

    Bernskoetter, W. H., Olmos, A. V., Pool, J. A., Lobkovsky, E. & Chirik, P. J. N–C bond formation promoted by a hafnocene dinitrogen complex: comparison of zirconium and hafnium congeners. J. Am. Chem. Soc. 128, 10696–10697 (2006).

    CAS  PubMed  Google Scholar 

  44. 44.

    Knobloch, D. J., Lobkovsky, E. & Chirik, P. J. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nat. Chem. 2, 30–35 (2010).

    CAS  PubMed  Google Scholar 

  45. 45.

    Moret, M.-E. & Peters, J. C. N2 functionalization at iron metallaboratranes. J. Am. Chem. Soc. 133, 18118–18121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    MacLeod, K. C. et al. Alkali-controlled C–H cleavage or N–C bond formation by N2-derived iron nitrides and imides. J. Am. Chem. Soc. 138, 11185–11191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Morello, L., Love, J. B., Patrick, B. O. & Fryzuk, M. D. Carbon-nitrogen bond formation via the reaction of terminal alkynes with a dinuclear side-on dinitrogen complex. J. Am. Chem. Soc. 126, 9480–9481 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Catalysis Program under award DE-SC0020315 (final phases of the work), and by the National Institutes of Health under award R01 GM-065313 (initial phases of the work). Additional fellowship support came from the National Institutes of Health (F31 GM-116463 to S.F.M.), the Netherlands Organization for Scientific Research (Rubicon Postdoctoral Fellowship 680-50-1517 to D.L.J.B.) and the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (internship for C.J.V.H.). This work was supported in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center, which was partially funded by the National Science Foundation under award CNS-08-21132. We thank N. Hazari, J. Mayer, J. Ellman and K. Skubi for critical feedback on the manuscript.

Author information

Affiliations

Authors

Contributions

S.F.M., D.L.J.B. and P.L.H. conceived the ideas and designed the experiments. S.F.M., D.L.J.B., C.J.V.H. and S.M.B. performed the experiments. B.Q.M. performed crystallographic measurements and interpretation. S.F.M., D.L.J.B. and P.L.H. wrote the manuscript.

Corresponding author

Correspondence to Patrick L. Holland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains supplementary materials and methods.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McWilliams, S.F., Broere, D.L.J., Halliday, C.J.V. et al. Coupling dinitrogen and hydrocarbons through aryl migration. Nature 584, 221–226 (2020). https://doi.org/10.1038/s41586-020-2565-5

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing