Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ‘Radcliffe Wave’ as a Kelvin–Helmholtz instability

The Original Article was published on 07 January 2020

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All data are available from the corresponding author upon reasonable request.


  1. 1.

    Matthews, L. D. & Uson, J. M. Corrugations in the disk of the edge-on spiral galaxy IC 2233. Astrophys. J. 688, 237–244 (2008).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Alves, J. et al. A Galactic-scale gas wave in the solar neighbourhood. Nature 578, 237–239 (2020).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Fleck, R. C. Scalloped disk galaxies: a Kelvin–Helmholtz instability? Astrophys. J. 270, 507–510 (1983).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Oxford Univ. Press, 1961).

  5. 5.

    Huppert, H. E. On Kelvin–Helmholtz instability in a rotating fluid. J. Fluid Mech. 33, 353–359 (1968).

    ADS  Article  Google Scholar 

  6. 6.

    Jaffe, T. R. et al. Modelling the Galactic magnetic field on the plane in two dimensions. Mon. Not. R. Astron. Soc. 401, 1013–1028 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Levine, E. S., Heiles, C. & Blitz, L. The Milky Way rotation curve and its vertical derivatives: inside the solar circle. Astrophys. J. 679, 1288–1298 (2008).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Santillán, A., Franco, J., Martos, M. & Kim, J. The collisions of high-velocity clouds with a magnetized gaseous galactic disk. Astrophys. J. 515, 657–668 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    Marinacci, F. et al. Galactic fountains and the rotation of disc-galaxy coronae. Mon. Not. R. Astron. Soc. 415, 1534–1542 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Zhang, Y., Shang, W., Yao, M., Dong, B. & Li, P. Effect of intermediate fluid layer on Kelvin–Helmholtz instability. Can. J. Phys. 96, 1145–1154 (2018).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Gómez, G. C. & Ostriker, E. C. The effect of the Coriolis force on Kelvin–Helmholtz-driven mixing in protoplanetary disks. Astrophys. J. 630, 1093–1106 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    Duff, R. E., Harlow, F. H. & Hirt, C. W. Effects of diffusion on interface instability between gases. Phys. Fluids 5, 417–425 (1962).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Tennekes, H. & Lumley, J. L. A First Course in Turbulence (MIT Press, 1972).

  14. 14.

    Livio, M., Regev, O. & Shaviv, G. Kelvin–Helmholtz instability in clusters of galaxies. Astrophys. J. 240, L83–L86 (1980).

    ADS  Article  Google Scholar 

  15. 15.

    Miles, J. W. On the generation of surface waves by shear flows. Part 3. Kelvin–Helmholtz instability. J. Fluid Mech. 6, 583–598 (1959).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Robert Fleck.

Ethics declarations

Competing interests

Declared none.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fleck, R. The ‘Radcliffe Wave’ as a Kelvin–Helmholtz instability. Nature 583, E24–E25 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing