Laser picoscopy of valence electrons in solids

Abstract

Valence electrons contribute a small fraction of the total electron density of materials, but they determine their essential chemical, electronic and optical properties. Strong laser fields can probe electrons in valence orbitals1,2,3 and their dynamics4,5,6 in the gas phase. Previous laser studies of solids have associated high-harmonic emission7,8,9,10,11,12 with the spatial arrangement of atoms in the crystal lattice13,14 and have used terahertz fields to probe interatomic potential forces15. Yet the direct, picometre-scale imaging of valence electrons in solids has remained challenging. Here we show that intense optical fields interacting with crystalline solids could enable the imaging of valence electrons at the picometre scale. An intense laser field with a strength that is comparable to the fields keeping the valence electrons bound in crystals can induce quasi-free electron motion. The harmonics of the laser field emerging from the nonlinear scattering of the valence electrons by the crystal potential contain the critical information that enables picometre-scale, real-space mapping of the valence electron structure. We used high harmonics to reconstruct images of the valence potential and electron density in crystalline magnesium fluoride and calcium fluoride with a spatial resolution of about 26 picometres. Picometre-scale imaging of valence electrons could enable direct probing of the chemical, electronic, optical and topological properties of materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Strong-field quasi-free electron motion in a crystal.
Fig. 2: Probing of the ionic/covalent radius of atoms in solids.
Fig. 3: Measurement of the Fourier coefficients of the crystal potential in MgF2.
Fig. 4: Reconstruction of the valence electron potential and density of MgF2.

Data availability

The datasets generated and/or analysed during this study are available from the corresponding authors on reasonable request.

Code availability

The analysis codes that support the findings of the study are available from the corresponding authors on reasonable request.

Change history

  • 31 July 2020

    This Article was amended to correct the Peer review information, which was originally incorrect.

References

  1. 1.

    Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    ADS  CAS  PubMed  Google Scholar 

  2. 2.

    Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010).

    CAS  Google Scholar 

  3. 3.

    Villeneuve, D. M., Hockett, P., Vrakking, M. J. J. & Niikura, H. Coherent imaging of an attosecond electron wave packet. Science 356, 1150–1153 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Kübel, M. et al. Spatiotemporal imaging of valence electron motion. Nat. Commun. 10, 1042 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    CAS  Google Scholar 

  8. 8.

    Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    ADS  CAS  Google Scholar 

  9. 9.

    Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    ADS  CAS  PubMed  Google Scholar 

  10. 10.

    Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015); corrigendum 542, 260 (2017).

    ADS  CAS  PubMed  Google Scholar 

  11. 11.

    Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    ADS  CAS  PubMed  Google Scholar 

  13. 13.

    You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 1, 1–6 (2016).

    Google Scholar 

  14. 14.

    You, Y. S., Cunningham, E., Reis, D. A. & Ghimire, S. Probing periodic potential of crystals via strong-field re-scattering. J. Phys. At. Mol. Opt. Phys. 51, 114002 (2018).

    ADS  Google Scholar 

  15. 15.

    von Hoegen, A., Mankowsky, R., Fechner, M., Först, M. & Cavalleri, A. Probing the interatomic potential of solids with strong-field nonlinear phononics. Nature 555, 79–82 (2018).

    ADS  Google Scholar 

  16. 16.

    Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).

    ADS  Google Scholar 

  17. 17.

    Vampa, G., McDonald, C. R., Orlando, G., Corkum, P. B. & Brabec, T. Semiclassical analysis of high harmonic generation in bulk crystals. Phys. Rev. B 91, 064302 (2015).

    ADS  Google Scholar 

  18. 18.

    Wu, M., Ghimire, S., Reis, D. A., Schafer, K. J. & Gaarde, M. B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    ADS  Google Scholar 

  19. 19.

    Higuchi, T., Stockman, M. I. & Hommelhoff, P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014).

    ADS  PubMed  Google Scholar 

  20. 20.

    Kemper, A. F., Moritz, B., Freericks, J. K. & Devereaux, T. P. Theoretical description of high-order harmonic generation in solids. New J. Phys. 15, 023003 (2013).

    ADS  MathSciNet  Google Scholar 

  21. 21.

    Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

    ADS  CAS  PubMed  Google Scholar 

  22. 22.

    Lanin, A. A., Stepanov, E. A., Fedotov, A. B. & Zheltikov, A. M. Mapping the electron band structure by intraband high-harmonic generation in solids. Optica 4, 516–519 (2017).

    ADS  CAS  Google Scholar 

  23. 23.

    Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Hüller, S. & Meyer-Ter-Vehn, J. High-order harmonic radiation from solid layers irradiated by subpicosecond laser pulses. Phys. Rev. A 48, 3906–3909 (1993).

    ADS  PubMed  Google Scholar 

  25. 25.

    Kálmán, P. & Brabec, T. Generation of coherent hard-X-ray radiation in crystalline solids by high-intensity femtosecond laser pulses. Phys. Rev. A 52, R21–R24 (1995).

    ADS  PubMed  Google Scholar 

  26. 26.

    Warren, B. E. X-ray Diffraction (Courier Corporation, 1990).

  27. 27.

    Tzoar, N. & Gersten, J. Theory of electronic band structure in intense laser fields. Phys. Rev. B 12, 1132–1139 (1975).

    ADS  Google Scholar 

  28. 28.

    Miranda, L. C. M. Energy-gap distortion in solids under intense laser fields. Solid State Commun. 45, 783–785 (1983).

    ADS  CAS  Google Scholar 

  29. 29.

    Holthaus, M. The quantum theory of an ideal superlattice responding to far-infrared laser radiation. Z. Phys. B 89, 251–259 (1992).

    ADS  Google Scholar 

  30. 30.

    Gruzdev, V. E. Photoionization rate in wide band-gap crystals. Phys. Rev. B 75, 205106 (2007).

    ADS  Google Scholar 

  31. 31.

    Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    ADS  CAS  PubMed  Google Scholar 

  32. 32.

    McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    CAS  PubMed  Google Scholar 

  33. 33.

    Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    ADS  CAS  Google Scholar 

  34. 34.

    Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  PubMed  Google Scholar 

  35. 35.

    Henneberger, W. C. Perturbation method for atoms in intense light beams. Phys. Rev. Lett. 21, 838–841 (1968).

    ADS  Google Scholar 

  36. 36.

    Gavrila, M. & Kamiński, J. Z. Free-free transitions in intense high-frequency laser fields. Phys. Rev. Lett. 52, 613–616 (1984).

    ADS  CAS  Google Scholar 

  37. 37.

    Gavrila, M. Atomic stabilization in superintense laser fields. J. Phys. At. Mol. Opt. Phys. 35, R147–R193 (2002).

    ADS  CAS  Google Scholar 

  38. 38.

    Morales, F., Richter, M., Patchkovskii, S. & Smirnova, O. Imaging the Kramers–Henneberger atom. Proc. Natl Acad. Sci. USA 108, 16906–16911 (2011).

    ADS  CAS  PubMed  Google Scholar 

  39. 39.

    Medišauskas, L., Saalmann, U. & Rost, J.-M. Floquet Hamiltonian approach for dynamics in short and intense laser pulses. J. Phys. At. Mol. Opt. Phys. 52, 015602 (2019).

    ADS  Google Scholar 

  40. 40.

    Taylor, G. The phase problem. Acta Crystallogr. D 59, 1881–1890 (2003).

    PubMed  Google Scholar 

  41. 41.

    Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953).

    ADS  Google Scholar 

  42. 42.

    Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    ADS  CAS  PubMed  Google Scholar 

  43. 43.

    Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    ADS  Google Scholar 

  44. 44.

    Ghosh, D. C. & Biswas, R. Theoretical calculation of absolute radii of atoms and ions. Part 2. The ionic radii. Int. J. Mol. Sci. 4, 379–407 (2003).

    CAS  Google Scholar 

  45. 45.

    Ghosh, D. C. & Biswas, R. Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii. Int. J. Mol. Sci. 3, 87–113 (2002).

    CAS  Google Scholar 

  46. 46.

    Meng, S. & Kaxiras, E. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. J. Chem. Phys. 129, 054110 (2008).

    ADS  PubMed  Google Scholar 

  47. 47.

    Lian, C., Hu, S.-Q., Guan, M.-X. & Meng, S. Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation. J. Chem. Phys. 149, 154104 (2018).

    ADS  PubMed  Google Scholar 

  48. 48.

    Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    ADS  CAS  Google Scholar 

  49. 49.

    Bertsch, G. F., Iwata, J.-I., Rubio, A. & Yabana, K. Real-space, real-time method for the dielectric function. Phys. Rev. B 62, 7998–8002 (2000).

    ADS  CAS  Google Scholar 

  50. 50.

    Castro, A., Marques, M. A. L. & Rubio, A. Propagators for the time-dependent Kohn–Sham equations. J. Chem. Phys. 121, 3425–3433 (2004).

    ADS  CAS  PubMed  Google Scholar 

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    ADS  CAS  Google Scholar 

  53. 53.

    Longhi, S., Horsley, S. A. R. & Della Valle, G. Scattering of accelerated wave packets. Phys. Rev. A 97, 032122 (2018).

    ADS  CAS  Google Scholar 

  54. 54.

    Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2011).

  55. 55.

    Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    ADS  CAS  PubMed  Google Scholar 

  56. 56.

    CaF2 crystal structure: datasheet from PAULING FILE Multinaries Edition – 2012 SpringerMaterials https://materials.springer.com/isp/crystallographic/docs/sd_0378096 (2016).

Download references

Acknowledgements

This work was supported by a European Research Council grant (Attoelectronics-258501), the Deutsche Forschungsgemeinschaft Cluster of Excellence, the Munich Centre for Advanced Photonics and the Max Planck Society.

Author information

Affiliations

Authors

Contributions

E.G. conceived and supervised the project. H.L., H.Y.K. and M.Z. performed the experiments and analysed the experimental data. H.Y.K. and H.L. performed the theoretical modelling and calculations. S.H and S.M. conducted the DFT and TDDFT modelling. E.G., H.L. and H.Y.K. interpreted the experimental data and contributed to the preparation of the manuscript. These authors contributed equally: H. Lakhotia, H. Y. Kim.

Corresponding author

Correspondence to E. Goulielmakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Michael Sentef, Andre Staudte, Marco Taucer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Strong field-driven electron dynamics in MgF2 (ħωL = 2eV).

ac, Comparison of crystal (νc; blue curves) and free (νfree; red dashed curves) electron velocities along the [100] direction of an MgF2 crystal as calculated by TDDFT for laser field strengths F0 of 0.1 V Å−1 (a), 0.9 V Å−1 (b) and 2.0 V Å−1, and carrier at an energy of ħωL = 2eV.

Extended Data Fig. 2 High-harmonic generation in MgF2 (theory).

High-harmonic spectra calculated by TDDFT simulations (red curve) and by use of the scattering model (blue curve) for laser parameters (ħωL = 2eV and F0 = 0.9 V Å−1) and crystal orientation settings as quoted in Fig. 1d.

Extended Data Fig. 3 Crystal orientation dependence of high-harmonic generation in MgF2.

The intensity of the third, ninth and thirteenth harmonics measured as a function of the crystal angle at field strengths (F0 = 0.58, 0.65 and 0.7 V Å−1) of the driving pulse. The rotation of the crystal is performed with respect to the c axis. The azimuthal angle represents the orientation of the crystal with respect to the laser polarization and the radius represents the harmonic yield. The four-fold symmetry of the crystal suggests a square lattice. Error bars in the measured data indicate the standard deviation of the mean value from four measurements acquired under identical conditions.

Extended Data Fig. 4 Laser picoscopy in CaF2.

a, Intensity yields of representative harmonics (N = 9, 11 and 13) in CaF2 measured as a function of the crystal rotation angle with respect to the c axis and for three representative driving field strengths (F0 = 0.58, 0.65 and 0.7 V Å−1). b, c, Intensity yields (black dots) of harmonics versus field strengths measured along the [110] (b) and [100] (c) axes of the crystal. The red and blue curves are the fitting of the intensity yields according to equation (18) or equation (3). Error bars in ac indicate the standard deviation of the mean value from three measurements acquired under identical conditions. d, e, Retrieved amplitudes \({\tilde{V}}_{{k}_{{\rm{l}}}}\,\) and their relative phases (0 rad in blue and π rad in red) along the [110] (d) and [100] (e) axes of the crystal.

Extended Data Fig. 5 Reconstruction of the valence electron potential and density of CaF2.

a, Crystal structure of CaF2. The laser pulse (orange curve) impinges on the crystal along the c axis. The potential is probed along lines determined by laser polarization vectors (orange arrows) and the symmetry point C. b, c, Reconstructed 1D slices of the valence potential (blue curves) when the laser polarization vector is aligned with the [110] (b) and [100] (c) axes. Grey and cyan spheres represent F and Ca2+, respectively, as aligned along the measurement line. d, Reconstructed 2D slice of the valence electron potential of CaF2 on the (002) plane. Bright spots represent Ca+2 ions and the light broad spots represent F ions. e, Valence electron density evaluated from the data in d. f, DFT-calculated valence electron density of CaF2 on the (002) plane.

Extended Data Fig. 6 Electron density of CaF2 extended over multiple unit cells.

Bright dots correspond to Ca+2 ions centred on (002) plane while the light dots correspond to F ions centred on (004) plane but penetrating into the (002) plane.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lakhotia, H., Kim, H.Y., Zhan, M. et al. Laser picoscopy of valence electrons in solids. Nature 583, 55–59 (2020). https://doi.org/10.1038/s41586-020-2429-z

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.