Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Variable water input controls evolution of the Lesser Antilles volcanic arc

An Author Correction to this article was published on 12 August 2020

This article has been updated


Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Bathymetric map of the study area, showing the islands of the LAA.
Fig. 2: Bathymetric map of the LAA compared with water, B/Nb ratios and δ11B of melt inclusions in lavas.
Fig. 3: Melt inclusion Nb/B versus δ11B for LAA magmas from this study.
Fig. 4: Summary of along-arc geochemical and geophysical data.

Data availability

All geochemical data generated during this study are included in this published article (and its supplementary information files) and can be accessed in the EarthChem repository ( Compiled geochemical data are freely available from the GEOROC database ( Shear velocity model data can be accessed at All broadband OBS data collected by the VoiLA project will become freely available through the IRIS Data Management Center via their data request tools, at the end of the project (April 2021).

Code availability

For plate-tectonic reconstructions we used the GPlates software, which is freely available at with the plate model at

Change history


  1. Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosystems 9, Q03001 (2008).

  2. Grevemeyer, I., Ranero, C. R. & Ivandic, M. Structure of oceanic crust and serpentinization at subduction trenches. Geosphere 14, 395–418 (2018).

    Article  ADS  Google Scholar 

  3. Goes, S. et al. Project VoiLA: Volatile Recycling in the Lesser Antilles. Eos 100, (2019).

  4. Wadge, G. Comparison of volcanic production rates and subduction rates in the Lesser Antilles and Central America. Geology 12, 555–558 (1984).

    Article  ADS  Google Scholar 

  5. Boynton, C. H., Westbrook, G. K., Bott, M. H. P. & Long, R. E. A seismic refraction investigation of crustal structure beneath the Lesser Antilles island arc. Geophys. J. R. Astron. Soc. 58, 371–393 (1979).

    Article  ADS  Google Scholar 

  6. Macdonald, R., Hawkesworth, C. J. & Heath, E. The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Sci. Rev. 49, 1–76 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Melekhova, E. et al. Lateral variation in crustal structure along the Lesser Antilles arc from petrology of crustal xenoliths and seismic receiver functions. Earth Planet. Sci. Lett. 516, 12–24 (2019).

    Article  ADS  CAS  Google Scholar 

  8. Hayes, G. P., McNamara, D. E., Seidman, L. & Roger, J. Quantifying potential earthquake and tsunami hazard in the Lesser Antilles subduction zone of the Caribbean region. Geophys. J. Int. 196, 510–521 (2014).

    Article  ADS  Google Scholar 

  9. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. Solid Earth 116, B01401 (2011).

  10. Carpentier, M., Chauvel, C. & Mattielli, N. Pb–Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth Planet. Sci. Lett. 272, 199–211 (2008).

    Article  ADS  CAS  Google Scholar 

  11. Bouysse, P. & Westercamp, D. Subduction of Atlantic aseismic ridges and Late Cenozoic evolution of the Lesser Antilles island arc. Tectonophysics 175, 349–380 (1990).

    Article  ADS  Google Scholar 

  12. Schlaphorst, D. et al. Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity. Geophys. J. Int. 204, 1405–1420 (2016).

    Article  ADS  Google Scholar 

  13. Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).

    Article  ADS  Google Scholar 

  14. Escartín, J. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455, 790–794 (2008).

    Article  ADS  Google Scholar 

  15. Manea, V. C., Leeman, W. P., Gerya, T., Manea, M. & Zhu, G. Subduction of fracture zones controls mantle melting and geochemical signature above slabs. Nat. Commun. 5, 5095 (2014).

    Article  ADS  CAS  Google Scholar 

  16. Bach, W. & Früh-Green, G. L. Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6, 173–178 (2010).

    Article  CAS  Google Scholar 

  17. De Hoog, J. C. M. & Savov, I. P. in Boron Isotopes: The Fifth Element (eds Marschall, H. & Foster, G.) 217–247 (Springer, 2018).

  18. Leeman, W. P., Tonarini, S. & Turner, S. Boron isotope variations in Tonga–Kermadec–New Zealand arc lavas: implications for the origin of subduction components and mantle influences. Geochem. Geophys. Geosyst. 18, 1126–1162 (2017).

    Article  ADS  CAS  Google Scholar 

  19. Leeman, W. P. in Subduction: Top to Bottom (eds Bebout, G. E. et al.) 269–276 (AGU, 1996).

  20. Tonarini, S., Leeman, W. P. & Leat, P. T. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics. Earth Planet. Sci. Lett. 301, 275–284 (2011).

    Article  ADS  CAS  Google Scholar 

  21. Marschall, H. R. in Boron Isotopes: The Fifth Element (eds Marschall, H. & Foster, G.) 189–215 (Springer, 2018).

  22. Bezard, R. et al. Assimilation of sediments embedded in the oceanic arc crust: myth or reality? Earth Planet. Sci. Lett. 395, 51–60 (2014).

    Article  ADS  CAS  Google Scholar 

  23. Plank, T. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 607–629 (Elsevier, 2014).

  24. Benton, L. D., Ryan, J. G. & Tera, F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett. 187, 273–282 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Kaliwoda, M. et al. Boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes. Lithos 125, 51–64 (2011).

    Article  ADS  CAS  Google Scholar 

  26. Jones, R. E. et al. Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics. Earth Planet. Sci. Lett. 408, 390–401 (2014).

    Article  ADS  CAS  Google Scholar 

  27. McCaig, A. M. et al. No significant boron in the hydrated mantle of most subducting slabs. Nat. Commun. 9, 4602–10 (2018).

    Article  ADS  Google Scholar 

  28. Paulatto, M. et al. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles. Nat. Commun. 8, 15980 (2017).

    Article  ADS  CAS  Google Scholar 

  29. Vils, F., Tonarini, S., Kalt, A. & Seitz, H.-M. Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic Ridge, ODP Leg 209. Earth Planet. Sci. Lett. 286, 414–425 (2009).

    Article  ADS  CAS  Google Scholar 

  30. Bie, L. et al. Along-arc heterogeneity in local seismicity across the Lesser Antilles subduction zone from a dense ocean-bottom seismometer network. Seismol. Res. Lett. 91, 237–247 (2020).

    Article  Google Scholar 

  31. Kirby, S., Engdahl, R. E. & Denlinger, R. in Subduction: Top to Bottom (eds Bebout, G. E. et al.) 195–214 (AGU, 1996).

  32. Hammond, W. C. & Humphreys, E. D. Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J. Geophys. Res. Solid Earth 105, 10975–10986 (2000).

    Article  Google Scholar 

  33. Gurenko, A. A., Trumbull, R. B., Thomas, R. & Lindsay, J. M. A melt inclusion record of volatiles, trace elements and Li–B isotope variations in a single magma system from the Plat Pays volcanic complex, Dominica, Lesser Antilles. J. Petrol. 46, 2495–2526 (2005).

    Article  ADS  CAS  Google Scholar 

  34. Bouvier, A.-S., Métrich, N. & Deloule, E. Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: inferences for magma genesis. Geochem. Geophys. Geosystems 11, Q09004 (2010).

  35. Bouvier, A.-S., Manzini, M., Rose-Koga, E. F., Nichols, A. R. L. & Baumgartner, L. P. Tracing of Cl input into the sub-arc mantle through the combined analysis of B, O and Cl isotopes in melt inclusions. Earth Planet. Sci. Lett. 507, 30–39 (2019).

    Article  ADS  CAS  Google Scholar 

  36. Humphreys, M. C. S., Kearns, S. L. & Blundy, J. D. SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: implications for melt inclusion analysis. Am. Mineral. 91, 667–679 (2006).

    Article  ADS  CAS  Google Scholar 

  37. Boschi, C. et al. Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11° N. Lithos 178, 3–23 (2013).

    Article  ADS  CAS  Google Scholar 

  38. Boschi, C., Dini, A., Früh-Green, G. L. & Kelley, D. S. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30° N): insights from B and Sr isotope data. Geochim. Cosmochim. Acta 72, 1801–1823 (2008).

    Article  ADS  CAS  Google Scholar 

  39. Spivack, A. J. & Edmond, J. M. Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51, 1033–1043 (1987).

    Article  ADS  CAS  Google Scholar 

  40. Marschall, H. R. et al. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 207, 102–138 (2017).

    Article  ADS  CAS  Google Scholar 

  41. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  ADS  CAS  Google Scholar 

  42. Collier, J. S. VoiLA—Volatile Recycling in the Lesser Antilles Arc: RRS James Cook Cruise Report JC133, 79, (2015).

  43. Collier, J. S. VOILA—Volatile Recycling in the Lesser Antilles Arc: RRS James Cook Cruise Report JC149, 161, (2017).

  44. Landisman, M., Dziewonski, A. & Satô, Y. Recent improvements in the analysis of surface wave observations. Geophys. J. Int. 17, 369–403 (1969).

    Article  ADS  Google Scholar 

  45. Levshin, A. L. & Ritzwoller, M. H. in Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves (eds Levshin, A. L. & Ritzwoller, M. H.) 1531–1545 (Birkhäuser Basel, 2001).

  46. Harmon, N. & Rychert, C. A. Joint inversion of teleseismic and ambient noise Rayleigh waves for phase velocity maps, an application to Iceland: noise-teleseismic phase velocity maps. J. Geophys. Res. Solid Earth 121, 5966–5987 (2016).

    Article  ADS  Google Scholar 

  47. Forsyth, D. W. & Li, A. in Seismic Earth: Array Analysis of Broadband Seismograms (eds Levander, A. & Nolet, G.) 81–97 (AGU, 2005).

  48. Yang, Y. & Forsyth, D. W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys. J. Int. 166, 1148–1160 (2006).

    Article  ADS  Google Scholar 

  49. Harmon, N. et al. Mapping geologic features onto subducted slabs. Geophys. J. Int. 219, 725–733 (2019).

    Article  ADS  Google Scholar 

  50. Braszus, B. 3D Teleseismic Travel Time Tomography along the Lesser Antilles Subduction Zone. MSc thesis, Karlsruhe Institute of Technology (2019).

  51. Perrin, A. et al. Reconciling mantle wedge thermal structure with arc lava thermobarometric determinations in oceanic subduction zones. Geochem. Geophys. Geosyst. 17, 4105–4127 (2016).

    Article  ADS  Google Scholar 

  52. Hicks, S. P. et al. Evidence for an anomalously large cold mantle wedge corner of the Caribbean Plate in the Lesser Antilles subduction zone. In AGU Fall Meeting 2019 T23A-08 (AGU, 2019).

  53. Halpaap, F. et al. Earthquakes track subduction fluids from slab source to mantle wedge sink. Sci. Adv. 5, eaav7369 (2019).

    Article  ADS  CAS  Google Scholar 

  54. Van Avendonk, H. J. A., Holbrook, W. S., Lizarralde, D. & Denyer, P. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem. Geophys. Geosystems 12, Q06009 (2011).

  55. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).

    Article  ADS  CAS  Google Scholar 

  56. Davy, R. G., Collier, J. S., Henstock, T. J. & the VoiLA consortium. Wide-angle seismic imaging of two modes of crustal accretion in mature Atlantic Ocean crust. J. Geophys. Res. Solid Earth (2020).

Download references


We thank our project partners R. Robertson, J. Latchman, S. Tait and F. Krüger for support and discussion over the course of this project. We thank C. J. de Hoog for assistance with SIMS analysis at the EIMF, S. Kearns for help with EPMA analysis, the German Instrument Pool for Amphibian Seismology (DEPAS), hosted by the Alfred Wegener Institute Bremerhaven, for providing the ocean-bottom and temporary island seismometers, and the Scripps Institution of Oceanography (OBSIP) for providing additional ocean-bottom seismometers. This research was funded by the VoiLA NERC consortium grant (NE/K010824/1). SIMS analysis was funded by EIMF proposals IMF619/0517 and IMF653/0518.

Author information

Authors and Affiliations




All authors discussed the results and implications of the work and commented on the manuscript at all stages. G.F.C., C.G.M., J.D.B. and A.A.I carried out geochemical analysis and interpretation. G.F.C., S.G., C.G.M., J.D.B. and J.C. drafted the manuscript. N.H. and C.R. produced the shear-wave velocity model. B.M. made the dehydration model. L.B. and S.P.H. compiled local seismicity data. D.S. mapped b-values. R.W.A and J.C. produced the tectonic reconstruction and associated figures. C.G.M., S.G., J.D.B., J.C., A.R., N.H., C.R., J.P.D., T.J.H., J.v.H., J.J.W. and M.W. designed the original VoiLA experiment.

Corresponding author

Correspondence to George F. Cooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks William Leeman and Othmar Müntener for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Modelled fracture zones.

a, Modelled fracture zones in the central Atlantic overlaid on an oceanic crust age grid from ref. 13. Coloured stars denote conjugate points associated with opening of the equatorial Atlantic at either end of the Vema (green stars) and Doldrums (yellow stars) fracture zones, and between the Demerara Rise and African continental margin (red stars). b, Modelled fracture zones overlaid on satellite free-air gravity55. Red ellipse marks the location of the proto-Caribbean/Atlantic boundary.

Extended Data Fig. 2 Modified plate reconstruction.

Snapshot of modified plate reconstruction at 50 Ma (ref. 13). Velocity vectors (coloured by plate) shown are relative to the mantle reference frame. The figure shows the four sources of dehydration from the subducted slab over the past 25 Myr considered here: (i) Marathon FZ; (ii) Mercurius FZ; (iii) proto-Caribbean/ equatorial Atlantic boundary and (iv) unnamed FZ formed during proto-Caribbean opening, labelled PC Fracture Zone. MAR, Mid-Atlantic Ridge.

Extended Data Fig. 3 Melt inclusion δ11B.

ae, All values of melt inclusion δ11B measured in this study are shown versus indicators of fluid composition (a, b) and differentiation (ce). No clear observable trends are shown between islands, indicating that these differences are largely controlled by the mantle source.

Extended Data Fig. 4 Excess dehydration.

The average rate of excess dehydration (above a uniform background), resulting from the subduction of fracture zones and the proto-Caribbean/Atlantic plate boundary, along the arc from 11° N to 18° N over the past 2 Myr (red solid curve) and 25 Myr (blue dotted curve), and below the forearc over the past 2 Myr (dashed yellow line). The pattern of relative distribution of dehydration is robust, constrained by the history of fracture-zone/plate-boundary subduction, but the absolute values of the dehydration rates should be treated with caution, as they depend strongly on the simple model assumptions of the level of hydration and relative strength of fore- and sub-arc dehydration. a, Best estimate; b, northern bound endmember; c, southern bound (see text for details).

Extended Data Table 1 δ11B values, B concentrations and Nb/B of sources of fluids used in the mixing model (Fig. 3).

Supplementary information

Supplementary Data

The file contains source data for Figs 2–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cooper, G.F., Macpherson, C.G., Blundy, J.D. et al. Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature 582, 525–529 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing