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Analyses of COVID-19 infection rates show that non-pharmaceutical interventions achieved large, beneficial and 

measurable health outcomes in China, South Korea, Italy, Iran, France and the United States; these results may inform 

decisions on whether or when these interventions should be deployed, intensified or lifted. 
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Governments around the world are responding to the coronavirus disease 2019 (COVID-19) 

pandemic
1
, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with 

unprecedented policies designed to slow the growth rate of infections. Many policies, such as 

closing schools and restricting populations to their homes, impose large and visible costs on 

society; however, their benefits cannot be directly observed and are currently understood 

only through process-based simulations
2–4

. Here we compile data on 1,700 local, regional 

and national non-pharmaceutical interventions that were deployed in the ongoing pandemic 

across localities in China, South Korea, Italy, Iran, France and the United States. We then 

apply reduced-form econometric methods, commonly used to measure the effect of policies 

on economic growth
5,6

, to empirically evaluate the effect that these anti-contagion policies 

have had on the growth rate of infections. In the absence of policy actions, we estimate that 

early infections of COVID-19 exhibit exponential growth rates of approximately 38% per 

day. We find that anti-contagion policies have significantly slowed this growth. Some 

policies have different effects on different populations, but we obtain consistent evidence 
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that the policy packages that were deployed to reduce the rate of transmission achieved 

large, beneficial and measurable health outcomes. We estimate that across these 6 countries, 

interventions prevented or delayed on the order of 61 million confirmed cases, 

corresponding to averting approximately 495 million total infections. These findings may 

help to inform decisions regarding whether or when these policies should be deployed, 

intensified or lifted, and they can support policy-making in the more than 180 other 

countries in which COVID-19 has been reported
7
. 

The COVID-19 pandemic is forcing societies worldwide to make consequential policy decisions 

with limited information. After containment of the initial outbreak failed, attention turned to 

implementing non-pharmaceutical interventions that are designed to slow the contagion of the 

virus. In general, these policies aim to decrease virus transmission by reducing contact among 

individuals within or between populations, such as by closing restaurants or restricting travel, 

thereby slowing the spread of COVID-19 to a manageable rate. These large-scale anti-contagion 

policies are informed by epidemiological simulations
2,4,8,9

 and a small number of natural 

experiments during past epidemics
10

. However, the actual effects of these policies on infection 

rates in the ongoing pandemic are unknown. Because the modern world has never confronted this 

pathogen, nor deployed anti-contagion policies of such scale and scope, it is crucial that direct 

measurements of the effects of policies are used together with numerical simulations in current 

decision-making. 

Societies around the world are considering whether the health benefits of anti-contagion 

policies are worth their social and economic costs. Many of these costs are clearly observed; for 

example, business restrictions increase unemployment and school closures affect educational 

outcomes. It is therefore not surprising that some populations have hesitated before implementing 

such policies, especially when their costs are visible while their health benefits—infections and 

deaths that would have occurred but are instead avoided or delayed—are unseen. Our objective is 

to measure the direct health benefits of these policies; specifically, how much these policies 

slowed the growth rate of infections. To do this, we compare the growth rate of infections within 

hundreds of subnational regions before and after each of these policies is implemented locally. 

Intuitively, each administrative unit observed immediately before a policy deployment serves as 

the ‘control’ for the same unit in the days after it receives a policy ‘treatment’ (see Supplementary 

Information for accounts of these deployments). Our hope is to learn from the recent experience of 
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six countries in which the early spread of the virus triggered large-scale policy actions, in part so 

that societies and decision-makers in the remaining more than 180 countries can access this 

information. 

Here we directly estimate the effects of 1,700 local, regional and national policies on the 

growth rate of infections across localities within China, France, Iran, Italy, South Korea and the 

United States (Fig. 1 and Supplementary Table 1). We compile subnational data on daily infection 

rates, changes in case definitions and the timing of policy deployments, including (1) travel 

restrictions, (2) social distancing through the cancellations of events and suspensions of 

educational, commercial and religious activities, (3) quarantines and lockdowns, and (4) additional 

policies such as emergency declarations and expansions of paid sick leave, from the earliest 

available dates to 6 April 2020 (Extended Data Fig. 1 and Supplementary Notes). During this 

period, populations remained almost entirely susceptible to COVID-19, causing the natural spread 

of infections to exhibit almost perfect exponential growth
11,12

. The rate of this exponential growth 

could change daily, determined by epidemiological factors, such as disease infectivity, as well as 

policies that alter behaviour
9,11,13

. Because policies were deployed while the epidemic unfolded, 

we can estimate their effects empirically. We examine how the daily growth rate of infections in 

each locality changed in response to the collection of ongoing policies applied to that locality on 

that day. 

We used well-established reduced-form econometric techniques
5,14

 that are commonly 

used to measure the effects of events
6,15

 on economic growth rates. Similar to early COVID-19 

infections, economic output generally increases exponentially with a variable rate that can be 

affected by policies and other conditions. Here, this technique aims to measure the total magnitude 

of the effect of changes in policy, without requiring explicit prior information about fundamental 

epidemiological parameters or mechanisms, many of which remain uncertain in the current 

pandemic. Rather, the collective influence of these factors is empirically recovered from the data 

without modelling their individual effects explicitly (see Methods). Previous research on 

influenza
16

, for example, has shown that such statistical approaches can provide important 

complementary information to process-based models. 

To construct the dependent variable, we transform location-specific, subnational 

time-series data on infections into first differences of their natural logarithm, which is the per-day 
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growth rate of infections (see Methods). We use data from first- or second-level administrative 

units and data on active or cumulative cases, depending on availability (Supplementary 

Information). We employ widely used panel regression models
5,14

 to estimate how the daily 

growth rate of infections changes over time within a location when different combinations of 

large-scale policies are enacted (see Methods). Our econometric approach accounts for differences 

in the baseline growth rate of infections across subnational locations, which may be affected by 

time-invariant characteristics, such as demographics, socioeconomic status, culture and health 

systems; it accounts for systematic patterns in growth rates within countries unrelated to policy, 

such as the effect of the workweek; it is robust to systematic undersurveillance specific to each 

subnational unit; and it accounts for changes in procedures to diagnose positive cases (Methods 

and Supplementary Information). 

We estimate that in the absence of policies, early infection rates of COVID-19 grow 43% per day 

on average across these six countries (s.e.m. = 5%), implying a doubling time of approximately 

2 days. Country-specific estimates range from 34% per day in the United States (s.e.m. = 7%) to 

68% per day in Iran (s.e.m. = 9%). We cannot determine whether the high estimate for Iran results 

from true epidemiological differences, data-quality issues (see Methods), the concurrence of the 

initial outbreak with a major religious holiday and pilgrimage (Supplementary Notes) or sampling 

variability. Excluding Iran, the average growth rate is 38% per day (s.e.m. = 5%). Growth rates in 

all five other countries are independently estimated to be very near this value (Fig. 2a). These 

estimated values differ from observed average growth rates because the latter are confounded by 

the effects of policies. These growth rates are not driven by the expansion of testing or increasing 

rates of case detection (Methods and Extended Data Fig. 2) nor by data from individual regions 

(Extended Data Fig. 3). 

Some previous analyses of pre-intervention infections in Wuhan have suggested that the 

growth rates were slower (doubling every 5–7 days)
17,18

 using data collected before national 

standards for diagnosis and case definitions were first issued by the Chinese government on 

15 January 2020
19

. However, case data in Wuhan from before this date contain multiple 

irregularities: the cumulative case count decreased on 9 January 2020; no new cases were reported 

for 9–15 January; and there were concerns that information about the outbreak was suppressed
20

 

(Supplementary Table 2). When we remove these data, using a shorter but more reliable 

pre-intervention time series from Wuhan (16–21 January), we recover a growth rate of 43% per 
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day (s.e.m. = 3%), which corresponds to a doubling time of 2 days, consistent with results from all 

other countries except Iran (Fig. 2a and Supplementary Table 3). During the early stages of an 

epidemic, a large proportion of the population remains susceptible to the virus, and if the spread of 

the virus is left uninhibited by changes in policies or behaviour, exponential growth continues until 

the fraction of the susceptible population decreases meaningfully
11,13,21,22

. After correcting for 

estimated rates of case detection
23

, we compute that the minimum susceptible fraction across 

administrative units in our sample is 72% of the total population (Cremona, Italy) and 87% of 

administrative units would likely be in a regime of uninhibited exponential growth (more than 

95% of the population remains susceptible) if policies were removed on the last date of our 

sample. 

Consistent with predictions from epidemiological models
2,10,24

, we find that the combined 

effect of policies within each country reduces the growth rate of infections by a substantial and 

statistically significant amount (Fig. 2b and Supplementary Table 3). For example, a locality in 

France with a baseline growth rate of 0.33 (national average) that fully deployed all policy actions 

used in France would be expected to lower its daily growth rate by −0.17 to a growth rate of 0.16. 

In general, the estimated total effects of policy packages are large enough that they can in principle 

offset a large fraction of, or even eliminate, the baseline growth rate of infections—although in 

several countries, many localities have not deployed the full set of policies. Overall, the estimated 

effects of all policies combined are generally insensitive to withholding regional (that is, state- or 

province-level) blocks of data from the sample (Extended Data Fig. 3). 

In China, only 3 policies were enacted across 115 cities early in a 7-week period, providing 

us with sufficient data to empirically estimate how the effects of these policies evolved over time 

without making assumptions about the timing of these effects (Fig. 2b and Methods). We estimate 

that the combined effect of these policies reduced the growth rate of infections by −0.026 

(s.e.m. = 0.046) in the first week after they came into effect, increasing substantially in the second 

week to −0.20 (s.e.m. = 0.049), and essentially stabilizing in the third week around −0.28 

(s.e.m. = 0.047). In other countries, we lack sufficient data to estimate these temporal dynamics 

explicitly and only report the average pooled effect of policies across all days after their 

deployment (Methods). If other countries have transient responses similar to China, we would 

expect that the effects in the first week after deployment are smaller in magnitude than the average 

effect that we report. We also explore how our estimates would change if we impose the 
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assumption that policies cannot affect infection growth rates until after a fixed number of days 

(Extended Data Fig. 5a and Supplementary Methods section 3); however, we do not find evidence 

this improves model fit. 

The estimates described above (Fig. 2b) capture the superposition of all policies deployed 

in each country, that is, they represent the average effect of policies that we would expect to 

observe if all policies enacted anywhere in each country were implemented simultaneously in a 

single region of that country. We also estimate the effects of individual policies or clusters of 

policies (Fig. 2c) that are grouped based on either their similarity in goal (for example, library and 

museum closures) or timing (for example, policies deployed simultaneously). Our estimates for 

these individual effects tend to be statistically noisier than the estimates for all policies combined. 

Some estimates for the same policy differ between countries, perhaps because policies are not 

implemented identically or because populations behave differently. Nonetheless, 22 out of 29 

point estimates indicate that individual policies are probably contributing to the reduction of the 

growth rate of infections. Seven policies (one in South Korea, two in Italy and four in the United 

States) have point estimates that are positive, six of which are small in magnitude (less than 0.1) 

and not statistically different from zero (5% level). Consistent with greater overall uncertainty in 

these disaggregated estimates, some of the estimates in China, South Korea, Italy and France are 

moderately more sensitive to withholding regional blocks of data (Extended Data Fig. 4), but 

remain broadly robust to the assumption of a constant delayed effect of all policies (Extended Data 

Fig. 5b). 

On the basis of these results, we find that the deployment of anti-contagion policies in all 

six countries significantly slowed the pandemic. We combine the estimates above with our data on 

the timing of the 1,700 policy deployments to estimate the total effect of all policies across the 

dates in our sample. To do this, we use our estimates to predict the growth rate of infections in each 

locality on each day, given the actual policies in effect at that location on that date (Fig. 3). We 

then use the same model to predict what the counterfactual growth rates would be on that date if 

the effects of all policies were removed (Fig. 3), which we call the no-policy scenario. The 

difference between these two predictions is our estimate of the effect that all deployed policies had 

on the growth rate of infections. During our sample, we estimate that all policies combined slowed 

the average growth rate of infections by −0.252 per day (s.e.m. = 0.045, P < 0.001) in China, 

−0.248 (s.e.m. = 0.089, P < 0.01) in South Korea, −0.24 (s.e.m. = 0.068, P < 0.001) in Italy, 
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−0.355 (s.e.m. = 0.063, P < 0.001) in Iran, −0.123 (s.e.m. = 0.019, P < 0.001) in France and 

−0.084 (s.e.m. = 0.03, P < 0.01) in the United States. These results are robust to modelling the 

effects of policies without grouping them (Extended Data Fig. 6a and Supplementary Table 4) or 

assuming a delayed effect of policy on infection growth rates (Supplementary Table 5). 

The number of COVID-19 infections on a date depends on the growth rate of infections on 

all previous days. Thus, persistent reductions in growth rates have a compounding effect on 

infections, until growth is slowed by a shrinking susceptible population. To provide a sense of 

scale for our results, we integrate the growth rate of infections in each locality from Fig. 3 to 

estimate cumulative infections, both with actual anti-contagion policies and in the no-policy 

scenario. To account for the declining susceptible population in each administrative unit, we 

couple our econometric estimates of the effects of policies with a susceptible–infected–removed 

model
11,13

 that adjusts the susceptible population in each administrative unit based on estimated 

case-detection rates
23,25

 (see Methods). This allows us to extend our projections beyond the initial 

exponential growth phase of infections, a threshold that many localities cross in our no-policy 

scenario. 

Our results suggest that anti-contagion policies have already substantially reduced the 

number of COVID-19 infections observed in the world at present (Fig. 4). Our central estimates 

suggest that there would be approximately 37 million more cumulative confirmed cases 

(corresponding to 285 million more total infections, including the confirmed cases by 5 March 

2020) in China, 11.5 million more confirmed cases (38 million total infections by 6 April 2020) in 

South Korea, 2.1 million more confirmed cases (49 million total infections by 6 April 2020) in 

Italy, 5 million more confirmed cases (54 million total infections by 22 March 2020) in Iran, 

280,000 more confirmed cases (9 million total infections by 25 March 2020) in France and 

4.8 million more confirmed cases (60 million total infections by 6 April 2020) in the United States 

had these countries never enacted any anti-contagion policies since the start of the pandemic.The 

magnitudes of these impacts partially reflect the timing, intensity and extent of policy deployment 

(for example, how many localities deployed policies) and the duration for which they have been 

applied. Several of these estimates are subject to large statistical uncertainties (see intervals in Fig. 

4). Sensitivity tests (Extended Data Fig. 7) that assume a range of plausible alternative parameter 

values relating to disease dynamics, such as incorporating a susceptible–exposed–infected–

removed model, suggest that interventions may have reduced the severity of the outbreak by a total 
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of 55–66 million confirmed cases over the dates in our sample (central estimates). Sensitivity tests 

in which the assumed infection–fatality ratio is varied (Supplementary Table 6) suggest a 

corresponding range of 46–77 million confirmed cases (490–580 million total infections). 

Our empirical results indicate that large-scale anti-contagion policies have slowed the 

COVID-19 pandemic. Because infection rates in the countries that we studied would have initially 

followed rapid exponential growth had no policies been applied, our results suggest that these 

policies have provided large health benefits. For example, we estimate that there would be 

approximately 465× the observed number of confirmed cases in China, 17× the number in Italy 

and 14× the number in the United States by the end of our analysis if large-scale anti-contagion 

policies had not been deployed. Consistent with process-based simulations of COVID-19 

infections
2,4,8,9,22,26

, our analysis of existing policies indicates that seemingly small delays in policy 

deployment probably produced markedly different health outcomes. 

Although the limitations of available data pose challenges to our analysis, our aim is to use 

what data exist to estimate the first-order effects of unprecedented policy actions in an ongoing 

global crisis. As more data become available, related findings will become more precise and may 

capture more complex interactions. Furthermore, this analysis does not account for interactions 

between populations in nearby localities
13

, nor mobility networks
3,4,8,9

. Nonetheless, we hope that 

these results can support critical decision-making, both in the countries that we study and in the 

more than 180 other countries in which COVID-19 infections have been reported
7
. 

A key advantage of our reduced-form top-down statistical approach is that it captures the 

real-world behaviour of affected populations without requiring that we explicitly model the 

underlying mechanisms and processes. This is useful in the current pandemic for which many 

process-related parameters remain uncertain. However, our results cannot and should not be 

interpreted as a substitute for bottom-up process-based epidemiological models that are 

specifically designed to provide guidance in public health crises. Rather, our results complement 

existing models, for example, by helping to calibrate key model parameters. We believe both 

forward-looking simulations and backward-looking empirical evaluations should be used to 

inform decision-making. 

Our analysis measures changes in local infection growth rates associated with changes in 

anti-contagion policies. A necessary condition for this association to be interpreted as the plausibly 
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causal effect of these policies is that the timing of policy deployment is independent of infection 

growth rates
14

. This assumption is supported by established epidemiological theory
11,13,27

 and 

evidence
28,29

, which indicate that infections in the absence of policy will grow exponentially early 

in the epidemic, implying that pre-policy infection growth rates should be constant over time and 

therefore uncorrelated with the timing of policy deployment. Furthermore, scientific guidance to 

decision-makers early in the current epidemic explicitly projected constant growth rates in the 

absence of anti-contagion measures, limiting the possibility that anticipated changes in natural 

growth rates affected decision-making
2,22,30,31

. In practice, policies tended to be deployed in 

response to the high total numbers of cases (for example, in France)
32

, in response to outbreaks in 

other regions (for example, in China, South Korea and Iran)
33

, after delays due to political 

constraints (for example, in the United States and Italy) and often with timings that coincided with 

arbitrary events, such as weekends or holidays (see Supplementary Notes for detailed 

chronologies). 

Our analysis accounts for documented changes in COVID-19 testing procedures and 

availability, as well as differences in case detection across locations; however, unobserved trends 

in case detection could affect our results (see Methods). We analyse estimated case-detection 

trends
23

 (Extended Data Fig. 2) and find that this potential bias is small—possibly elevating our 

estimated no-policy growth rates by 0.022 (7%) on average. 

It is also possible that changing public knowledge during the period of our study affects our 

results. If individuals alter their behaviour in response to new information unrelated to 

anti-contagion policies, such as seeking out online resources, this could alter the growth rate of 

infections and thus affect our estimates. If increasing availability of information reduces infection 

growth rates, it would cause us to overstate the effectiveness of anti-contagion policies. We note, 

however, that if public knowledge is increasing in response to policy actions, such as through news 

reports, then it should be considered a pathway through which policies alter infection growth, not a 

form of bias. Investigating these potential effects is beyond the scope of this analysis, but it is an 

important topic for future investigations. 

Finally, our analysis focuses on confirmed infections, but other outcomes, such as 

hospitalizations or deaths, are also of policy interest. Future studies on these outcomes may require 

additional modelling approaches because they are relatively more context- and state-dependent. 
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Nonetheless, we experimentally implement our approach on the daily growth rate of 

hospitalizations in France, for which hospitalization data are available at the granularity of this 

study. We find that the total estimated effect of anti-contagion policies on the growth rate of 

hospitalizations is similar to our estimates for infection growth rates (Extended Data Fig. 6c). 

Online content Any methods, additional references, Nature Research reporting summaries, source data, extended 

data, supplementary information, acknowledgements, peer review information; details of author contributions and 

competing interests; and statements of data and code availability are available at 

Received 22 March 2020; accepted 26 May 2020 

Published online 4 June 2020 

<jrn>1. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. 

Nature 579, 265–269 (2020). </jrn> 

<bok>2. Ferguson, N. M. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce 

COVID-19 mortality and healthcare demand. Technical Report (Imperial College 

London, 2020).</bok> 

<jrn>3. Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel 

coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020). </jrn> 

<jrn>4. Kraemer, M. U. G. et al. The effect of human mobility and control measures on the 

COVID-19 epidemic in China. Science 368, 493–497 (2020). </jrn> 

<bok>5. Greene, W. H. Econometric Analysis (Prentice Hall, 2003).</bok> 

<jrn>6. Romer, C. D. & Romer, D. H. The macroeconomic effects of tax changes: estimates based 

on a new measure of fiscal shocks. Am. Econ. Rev. 100, 763–801 (2010).</jrn> 

<eref>7. WHO. WHO Coronavirus Disease (COVID-19) Dashboard. 

https://who.sprinklr.com/ (Accessed 13 April 2020).</eref> 

<jrn>8. Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of 

novel coronavirus (SARS-CoV-2). Science 368, 489–493 (2020). </jrn> 

<jrn>9. Tang, B. et al. Estimation of the transmission risk of the 2019-nCoV and its implication 

for public health interventions. J. Clin. Med. 9, 462 (2020). </jrn> 

https://who.sprinklr.com/


Publisher: NPG; Journal: Nature: Nature; Article Type: Biology article 

 MS nr: 10.1038/nature 

Page 11 of 33 

<jrn>10. Hatchett, R. J., Mecher, C. E. & Lipsitch, M. Public health interventions and 

epidemic intensity during the 1918 influenza pandemic. Proc. Natl Acad. Sci. USA 104, 

7582–7587 (2007). </jrn> 

<jrn>11. Ma, J. Estimating epidemic exponential growth rate and basic reproduction 

number. Infect. Dis. Model. 5, 129–141 (2020). </jrn> 

<jrn>12. Muniz-Rodriguez, K. et al. Doubling time of the COVID-19 epidemic by province, 

China. Emerg. Infect. Dis. 26, http://doi.org/10.3201/eid2608.200219 (2020). </jrn> 

<jrn>13. Chowell, G., Sattenspiel, L., Bansal, S. & Viboud, C. Mathematical models to 

characterize early epidemic growth: a review. Phys. Life Rev. 18, 66–97 (2016). </jrn> 

<bok>14. Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s 

Companion (Princeton Univ. Press, 2008).</bok> 

<jrn>15. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on 

economic production. Nature 527, 235–239 (2015). </jrn> 

<jrn>16. Kandula, S. et al. Evaluation of mechanistic and statistical methods in forecasting 

influenza-like illness. J. R. Soc. Interface 15, 20180174 (2018). </jrn> 

<jrn>17. Wu, J. T. et al. Estimating clinical severity of COVID-19 from the transmission 

dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020). </jrn> 

<jrn>18. Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel 

coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020). </jrn> 

<eref>19. Tsang, T. K. et al. Impact of changing case definitions for COVID-19 on the 

epidemic curve and transmission parameters in mainland China. Preprint at medRxiv 

https://doi.org/10.1101/2020.03.23.20041319 (2020).</eref> 

<eref>20. Wuhan pneumonia: 30 days from outbreak to out of control [in Chinese]. BBC 

News https://www.bbc.com/zhongwen/simp/chinese-news-51290945 (2020).</eref> 

<jrn>21. Fisman, D., Khoo, E. & Tuite, A. Early epidemic dynamics of the West African 

2014 Ebola outbreak: estimates derived with a simple two-parameter model. PLoS Curr. 

6, https://doi.org/10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571 

(2014). </jrn> 

http://doi.org/10.3201/eid2608.200219
https://doi.org/10.1101/2020.03.23.20041319
https://www.bbc.com/zhongwen/simp/chinese-news-51290945
https://doi.org/10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571


Publisher: NPG; Journal: Nature: Nature; Article Type: Biology article 

 MS nr: 10.1038/nature 

Page 12 of 33 

<jrn>22. Maier, B. F. & Brockmann, D. Effective containment explains subexponential 

growth in recent confirmed COVID-19 cases in China. Science 368, 742–746 (2020). 

</jrn> 

<bok>23. Russell, T. W. et al. Using a delay-adjusted case fatality ratio to estimate 

under-reporting. Technical Report (Centre for the Mathematical Modelling of Infectious 

Diseases, London School of Hygiene & Tropical Medicine, 2020).</bok> 

<jrn>24. Bootsma, M. C. J. & Ferguson, N. M. The effect of public health measures on the 

1918 influenza pandemic in U.S. cities. Proc. Natl Acad. Sci. USA 104, 7588–7593 

(2007). </jrn> 

<eref>25. Meyerowitz-Katz, G. & Merone, L. A systematic review and meta-analysis of 

published research data on covid-19 infection-fatality rates. Preprint at medRxiv 

https://doi.org/10.1101/2020.05.03.20089854 (2020).</eref> 

<jrn>26. Kucharski, A. J. et al. Early dynamics of transmission and control of COVID-19: a 

mathematical modelling study. Lancet Infect. Dis. 20, 553–558 (2020). </jrn> 

<bok>27. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and 

Control (Oxford Univ. Press, 1992).</bok> 

<jrn>28. Nishiura, H., Chowell, G., Safan, M. & Castillo-Chavez, C. Pros and cons of 

estimating the reproduction number from early epidemic growth rate of influenza A 

(H1N1) 2009. Theor. Biol. Med. Model. 7, 1 (2010). </jrn> 

<jrn>29. WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 

months of the epidemic and forward projections. N. Engl. J. Med. 371, 1481–1495 (2014). 

</jrn> 

<bok>30. Flaxman, S. et al. Estimating the number of infections and the impact of 

non-pharmaceutical interventions on COVID-19 in 11 European countries. Technical 

Report 13 (Imperial College London, 2020).</bok> 

<unknown>31. Lourenço, J. et al. Fundamental principles of epidemic spread highlight the 

immediate need for large-scale serological surveys to assess the stage of the SARS-CoV-2 

epidemic. Preprint at medRxiv https://doi.org/10.1101/2020.03.24.20042291 

(2020).</unknown> 

https://doi.org/10.1101/2020.03.24.20042291


Publisher: NPG; Journal: Nature: Nature; Article Type: Biology article 

 MS nr: 10.1038/nature 

Page 13 of 33 

<eref>32. Préparation au Risque épidémique COVID-19 [in French]. 

https://solidarites-sante.gouv.fr/IMG/pdf/guide_methodologique_covid-19-2.pdf 

(2020).</eref> 

<jrn>33. Tian, H. et al. An investigation of transmission control measures during the first 50 

days of the COVID-19 epidemic in China. Science 368, 638–642 (2020). </jrn> 

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional 

affiliations. 

Fig. 1 | Data on COVID-19 infections and large-scale anti-contagion policies. Left, daily 

cumulative confirmed cases of COVID-19 (solid black line, left axis) and deaths (dashed black 

line) over time. Vertical lines are deployments of anti-contagion policies, for which the height 

indicates the number of administrative units that instituted a policy that day (right axis). For 

display purposes only, ≤5 policy types are shown per country and missing case data are imputed 

unless all subnational units are missing. Right, Maps of cumulative confirmed cases by 

administrative unit on the last date of each sample. 

Fig. 2 | Empirical estimates of unmitigated COVID-19 infection growth rates and the effect 

of anti-contagion policies. Markers are country-specific estimates, whiskers show the 95% 

confidence interval. Columns report effect sizes as a change in the continuous-time growth rate 

(95% confidence interval are shown in parentheses) and the day-over-day percentage growth rate. 

a, Estimates of daily COVID-19 infection growth rates in the absence of policy (dashed lines, 

averages with and without Iran, both excluding the Wuhan-specific estimate). b, Estimated 

combined effect of all policies on infection growth rates. c, Estimated effects of individual policies 

or policy groups on the daily growth rate of infections, jointly estimated and ordered roughly 

chronologically within each country. The asterisks indicate that the reported effect of ‘home 

isolation’ includes effects of other implied policies (see Methods). China, n = 3,669; South Korea, 

n = 595; Italy, n = 2,898; Iran, n = 548; France, n = 270; United States, n = 1,238. 

Fig. 3 | Estimated infection growth rates based on actual anti-contagion policies and in a 

no-policy counterfactual scenario. Predicted daily growth rates of active (China and South 

Korea) or cumulative (all others) COVID-19 infections based on the observed timing of all policy 

deployments within each country (blue) and in a scenario in which no policies were deployed 

(red). The difference between these two predictions is our estimated effect of actual anti-contagion 
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policies on the growth rate of infections. Small markers are daily estimates for subnational 

administrative units (vertical lines are 95% confidence interval). Large markers are national 

averages. Black circles are observed daily changes in log(infections), averaged across 

administrative units. Sample sizes are the same as in Fig. 2. 

Fig. 4 | Estimated cumulative confirmed COVID-19 infections with and without 

anti-contagion policies. The predicted cumulative number of confirmed COVID-19 infections 

based on actual policy deployments (blue) and in the no-policy counterfactual scenario (red). 

Shaded areas show uncertainty based on 1,000 simulations for which empirically estimated 

parameters are resampled from their joint distribution (dark, inner 70% of predictions; light, inner 

95%). Black dotted line is observed cumulative infections. Infections are not projected for 

administrative units that never report infections in the sample, but which might have experienced 

infections in a no-policy scenario. 

METHODS 

Data reporting 

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and the investigators were not blinded to allocation during experiments and outcome 

assessment. 

Data collection and processing 

We provide a brief summary of our data collection processes here; further details, including access 

dates are provided in the Supplementary Notes. Epidemiological data, case definitions/testing 

regimes and policy data for each of the six countries in our sample were collected from a variety of 

in-country data sources, including government public health websites, regional newspaper articles 

and crowd-sourced information on Wikipedia. The availability of epidemiological and policy data 

varied across the six countries, and preference was given to the collection of data at the most 

granular administrative unit level. The country-specific panel datasets are at the regional level in 

France, the state level in the United States, the province level in South Korea, Italy and Iran, and 

the city level in China. Owing to data availability, the sample dates differ across countries: in 

China we use data from 16 January to 5 March 2020; in South Korea from 17 February to 6 April 

2020; in Italy from 26 February to 6 April 2020; in Iran from 27 February to 22 March 2020; in 
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France from 29 February to 25 March 2020; and in the United States from 3 March to 6 April 

2020. Our data sources are described in more detail below. 

China 

We acquired epidemiological data from an open-source GitHub project
34

 that scrapes time series 

data from Ding Xiang Yuan, a Chinese website that integrates COVID-19 epidemiological data 

from various local governments. We extended this dataset back in time to 10 January 2020 by 

manually collecting official daily statistics from the central and provincial (Hubei, Guangdong and 

Zhejiang) Chinese government websites. We compiled policies by collecting data on the start 

dates of travel bans and lockdowns at the city level from the ‘2020 Hubei lockdowns’ Wikipedia 

page
35

 and various other news reports. We suspect that most Chinese cities have implemented at 

least one anti-contagion policy due to their reported trends in infections; as such, we dropped cities 

for which we could not identify a policy deployment date to avoid miscategorizing the policy 

status of these cities. Thus our results are only representative for the sample of 115 cities for which 

we obtained policy data. 

South Korea 

We manually collected and compiled the epidemiological dataset for South Korea, based on 

provincial government reports, policy briefings and news articles. We compiled policy actions 

from news articles and press releases from the Korean Centers for Disease Control and Prevention, 

the Ministry of Foreign Affairs and websites of local governments. 

Iran 

We used epidemiological data from the table ‘New COVID-19 cases in Iran by province’
36

 in the 

‘2020 coronavirus pandemic in Iran’ Wikipedia article, which were compiled from data provided 

by the Iranian Ministry of Health website (in Persian). We relied on news reporting and two 

timelines of pandemic events in Iran
36,37

 to collate policy data. From 2 March to 3 March 2020, 

Iran did not report subnational cases. Around this period, the country implemented three national 

policies: a recommendation against local travel (1 March), work from home for government 

employees (3 March) and school closure (5 March). As the effects of these policies cannot be 

distinguished from each other due to the data gap, we group them together for the purpose of this 

analysis. 
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Italy 

We used epidemiological data from the GitHub repository
38

 maintained by the Italian Department 

of Civil Protection (Dipartimento della Protezione Civile). For policies, we primarily relied on the 

English version of the COVID-19 dossier ‘Chronology of main steps and legal acts taken by the 

Italian Government for the containment of the COVID-19 epidemiological emergency’ written by 

the Dipartimento della Protezione Civile
39

, and Wikipedia
40

. 

France 

We used the region-level epidemiological dataset provided by the government website of France
41

 

and supplemented it with the number of confirmed cases by region on the public health website of 

France, which was previously updated daily until 25 March
42

. We obtained data on the policy 

response to the COVID-19 pandemic from the French government website, press releases from 

each regional public health site
43

 and Wikipedia
44

. 

United States 

We used state-level epidemiological data from usafacts.org
45

, which are compiled from multiple 

sources. For policy responses, we relied on a number of sources, including the US Centers for 

Disease Control and the National Governors Association, as well as various executive orders from 

county- and city-level governments, and press releases from media outlets. 

Policy data 

Policies in administrative units were coded as binary variables, for which the policy was coded as 

either 1 (after the date that the policy was implemented and before it was removed) or 0 

(otherwise) for the affected administrative units. When a policy only affected a fraction of an 

administrative unit (for example, half of the counties within a state), policy variables were 

weighted by the percentage of people within the administrative unit who were treated by the 

policy. We used the most recent population estimates we could find for the administrative units of 

countries (see the ‘Population Data’ section in the Supplementary Information). To standardize 

policy types across countries, we mapped each country-specific policy to one of the broader policy 

category variables in our analysis. In this exercise, we collected 168 policies for China, 59 for 

South Korea, 214 for Italy, 23 for Iran, 59 for France and 1,177 for the United States 

(Supplementary Table 1). There are some cases for which we encode policies that are necessarily 
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in effect whenever another policy is in place, owing in particular to the far-reaching implications 

of home-isolation policies. In China, wherever home isolation is documented, we assume a local 

travel ban is enacted on the same day if we have not found an explicit local travel ban policy for a 

given locality. In France, we assume home isolation is accompanied by event cancellations, social 

distancing and no-gathering policies; in Italy, we assume home isolation entails no-gathering, 

local travel ban, work from home and social distancing policies; in the United States, we assume 

shelter-in-place orders indicate that non-essential business closures, work from home policies and 

no-gathering policies are in effect. For policy types that are enacted multiple times at increasing 

degrees of intensity within a locality, we add weights to the variable by escalating the intensity 

from 0 pre-policy in steps up to 1 for the final version of the policy (see the ‘Policy Data’ section in 

the Supplementary Information). 

Epidemiological data 

We collected information on cumulative confirmed cases, cumulative recoveries, cumulative 

deaths, active cases and any changes to domestic COVID-19-testing regimes, such as case 

definitions or testing methodology. For our regression analysis (Fig. 2), we use active cases when 

they are available (China and South Korea) and cumulative confirmed cases otherwise. We 

document quality-control steps in the Supplementary Information. For China and South Korea, we 

acquired more granular data than the data hosted on the Johns Hopkins University (JHU) 

interactive dashboard
46

; we confirm that the number of confirmed cases closely match between the 

two data sources (see Extended Data Fig. 1). To conduct the econometric analysis, we merge the 

epidemiological and policy data to form a single data set for each country. 

 

Econometric analysis 

Reduced-form approach 

The reduced-form econometric approach that we apply here is a ‘top-down’ approach that 

describes the behaviour of aggregate outcomes y in data (in this case, infection rates). This 

approach can identify plausibly causal effects
5,14

 induced by exogenous changes in independent 

policy variables z (for example, school closure) without explicitly describing all underlying 

mechanisms that link z to y, without observing intermediary variables x (for example, behaviour) 

that might link z to y, or without other determinants of y unrelated to z (for example, 
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demographics), denoted w. Let f(·) describe a complex and unobserved process that generates 

infection rates y: 

1 1 1 1= ( ( ,..., ),..., ( ,..., ), ,..., )K N K My f x z z x z z w w (1) 

Process-based epidemiological models aim to capture elements of f(·) explicitly, and then 

simulate how changes in z, x or w affect y. This approach is particularly important and useful in 

forward-looking simulations in which future conditions are likely to be different than historical 

conditions. However, a challenge faced by this approach is that we may not know the full structure 

of f(·), for example, if a pathogen is new and many key biological and societal parameters remain 

uncertain. We may not know the effect that large-scale policy (z) will have on behaviour (x(z)) or 

how this behaviour change will affect infection rates (f(·)). 

Alternatively, one can differentiate equation (1) with respect to the kth policy zk: 

=1

=
N

j

jk j k

xy y

z x z

 

  
 (2) 

which describes how changes in the policy affects infections through all N potential pathways 

mediated by x1, ..., xN. Usefully, for a fixed population observed over time, empirically estimating 

an average value of the local derivative on the left side in equation (2) does not depend on explicit 

knowledge of w. If we can observe y and z directly and estimate changes over time 
k

y

z




 with data, 

then intermediate variables x also need not be observed nor modelled. The reduced-form 

econometric approach
5,14

 thus attempts to measure 
k

y

z




 directly, exploiting exogenous variation 

in policies z. 

Model 

Active infections grow exponentially during the initial phase of an epidemic, when the proportion 

of immune individuals in a population is near zero. Assuming a simple susceptible–infected–

recovered (SIR) disease model
11

, the growth in infections during the early period is 
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where It is the number of infected individuals at time t, β is the transmission rate (new infections 

per day per infected individual), γ is the removal rate (proportion of infected individuals 

recovering or dying each day) and S is the fraction of the population susceptible to the disease. The 

second equality holds in the limit S → 1, which describes the current conditions during the 

beginning of the COVID-19 pandemic. The solution to this ordinary differential equation is the 

exponential function 

( )2 2 1

1

= e ,
t g t t

t

I

I



(4) 

where 
1t

I  is the initial condition. Taking the natural logarithm and rearranging, we have 

2 12 1
log( ) log( ) = ( ).t tI I g t t  (5) 

Anti-contagion policies are designed to alter g, through changes to β, by reducing contact 

between susceptible and infected individuals. Holding the time step between observations fixed at 

one day (t2 − t1 = 1), we thus model g as a time-varying outcome that is a linear function of a 

time-varying policy 

1 0= log( ) log( ) = policy ,t t t t tg I I      (6) 

where θ0 is the average growth rate without a policy, policyt is a binary variable describing 

whether a policy is deployed at time t, and θ is the average effect of the policy on growth rate g 

over all periods subsequent to the introduction of the policy, thereby encompassing any lagged 

effects of policies. εt is a mean-zero disturbance term that captures interperiod changes not 

described by policyt. Using this approach, infections each day are treated as the initial conditions 

for integrating equation (4) through to the following day. 

We compute the first differences log(It) − log(It − 1) using active infections in countries for 

which they are available, otherwise we use cumulative infections, noting that they are almost 

identical during this early period (except in China, where we use active infections). We then match 

these data to policy variables that we construct using the novel datasets that we assembled and 

apply a reduced-form approach to estimate a version of equation (6), although the actual 

expression has additional terms detailed below. 
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Estimation 

To estimate a multi-variable version of equation (6), we estimate a separate regression for each 

country c. Observations are for subnational units indexed by i observed for each day t. Because not 

all localities began testing for COVID-19 on the same date, these samples are unbalanced panels. 

To ensure data quality, we restrict our analysis to localities after they have reported at least ten 

cumulative infections. 

A necessary condition for unbiased estimates is that the timing of policy deployment is 

independent of natural infection growth rates
14

, a mathematical condition that should be true in the 

context of a new epidemic. In established epidemiological models, including the standard SIR 

model above, early rates of infection within a susceptible population are characterized by constant 

exponential growth. This phenomenon is well understood theoretically
13,27,47

, has been repeatedly 

documented in past epidemics
28,29,48

 as well as the current COVID-19 pandemic
11,12

, and implies 

constant infection growth rates in the absence of policy intervention. Thus, we treat changes in 

infection growth rates as conditionally independent of policy deployments since the correlation 

between a constant variable and any other variable is zero in expectation. 

We estimate a multiple regression version of equation (6) using ordinary least squares. We 

include a vector of subnational unit fixed effects θ0 (that is, varying intercepts captured as 

coefficients to dummy variables) to account for all time-invariant factors that affect the local 

growth rate of infections, such as differences in demographics, socioeconomic status, culture and 

health systems
5
. We include a vector of day-of-week fixed effects δ to account for weekly patterns 

in the growth rate of infections that are common across locations within a country; however, in 

China, we omit day-of-week effects because we find no evidence they are present in the 

data—perhaps because of the fact that the outbreak of COVID-19 began during a national holiday 

and workers never returned to work. We also include a separate single-day dummy variable each 

time there is an abrupt change in the availability of COVID-19 testing or a change in the procedure 

to diagnose positive cases. Such changes generally manifest as a discontinuous jump in infections 

and a re-scaling of subsequent infection rates (for example, see ‘China’ in Fig. 1), effects that are 

flexibly absorbed by a single-day dummy variable because the dependent variable is the first 

difference of the logarithm of infections. We denote the vector of these effects μ. 
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Lastly, we include a vector of Pc country-specific policy variables (policy) for each 

location and day. These policy variables take on values between 0 and 1 (inclusive) where 0 

indicates no policy action and 1 indicates a policy is fully enacted. In cases in which a policy 

variable captures the effects of collections of policies (for example, museum closures and library 

closures), a policy variable is computed for each, then they are averaged, so the coefficient on this 

type of variable is interpreted as the effect if all policies in the collection are fully enacted. There 

are also instances in which multiple policies are deployed on the same date in numerous locations, 

in which case we group policies that have similar objectives (for example, suspension of transit 

and travel ban, or cancelling of events and no gathering) and keep other policies separate (that is, 

business closure and school closure). The grouping of policies is useful for reducing the number of 

estimated parameters in our limited sample of data, allowing us to examine the impact of subsets 

of policies (Fig. 2c). However, policy grouping does not make a substantial difference to the 

estimated effect of all policies combined nor to the effect of actual policies, which we demonstrate 

by estimating a regression model in which no policies are grouped and these values are 

recalculated (Extended Data Fig. 6 and Supplementary Table 4). 

In some cases (for Italy and the United States), policy data are available at a more spatially 

granular level than infection data (for example, city policies and state-level infections in the United 

States). In these cases, we code binary policy variables at the more granular level and use 

population weights to aggregate them to the level of the infection data. Thus, policy variables may 

take on continuous values between 0 and 1, with a value of 1 indicating that the policy is fully 

enacted for the entire population. Given the limited quantity of data currently available, we use a 

parsimonious model that assumes the effects of policies on infection growth rates are 

approximately linear and additively separable. However, future studies that comprise more data 

may be able to identify important nonlinearities or interactions between policies. 

For each country, our general multiple regression model is thus 

 , 1 0,
=1

= log( ) log( ) = policy

Pc

cit cit ci t ci ct cit cp pcit cit
p

g I I          (7) 

where observations are indexed by country c, subnational unit i and day t. The parameters of 

interest are the country-by-policy specific coefficients θcp. We display the estimated residuals εcit 

in Extended Data Fig. 10, which are mean zero but not strictly normal (normality is not a 
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requirement of our modelling and inference strategy), and we estimate uncertainty over all 

parameters by calculating our standard errors robust to error clustering at the day level
14

. This 

approach allows the covariance in εcit across different locations within a country, observed on the 

same day, to be non-zero. Such clustering is important in this context because idiosyncratic events 

within a country, such as a holiday or a backlog in testing laboratories, could generate nonuniform 

country-wide changes in infection growth for individual days that are not explicitly captured in our 

model. Thus, this approach nonparametrically accounts for both arbitrary forms of spatial 

autocorrelation or systematic misreporting in regions of a country on any given day (we note that it 

generates larger estimates for uncertainty than clustering by i). When we report the effect of all 

policies combined (Fig. 2b), we are reporting the sum of coefficient estimates for all policies 

=1

Pc
cpp
 , accounting for the covariance of errors in these estimates when computing the 

uncertainty of this sum. 

Note that our estimates of θ and θ0 in equation (7) are robust to systematic underreporting 

of infections, a major concern in the ongoing pandemic, due to the construction of our dependent 

variable. This remains true even if different localities have different rates of underreporting, so 

long as the rate of underreporting is relatively constant. To see this, note that if each locality i has a 

medical system that reports only a fraction ψi of infections such that we observe =it i itI I  rather 

an actual infections Iit, then the left side of equation (7) will be 

, 1 , 1
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and is therefore unaffected by location-specific and time-invariant underreporting. Thus 

systematic underreporting does not affect our estimates for the effects of policy θ. As discussed 

above, potential biases associated with non-systematic underreporting that results from 

documented changes in testing regimes over space and time are absorbed by region–day-specific 

effects μ. 

However, if the rate of underreporting within a locality is changing day-to-day, this could 

bias infection growth rates. We estimate the magnitude of this bias (Extended Data Fig. 2), and 

verify that it is quantitatively small. Specifically, if =it it itI I  where ψit changes day-to-day, then 
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, 1 , 1log( ) log( ) = log( ) log( )it i t it i t tI I g     (8) 

where log(ψit) − log(ψi,t − 1) is the day-over-day growth rate of the case-detection probability. 

Disease surveillance has evolved slowly in some locations as governments gradually expand 

testing, which would cause ψit to change over time, but these changes in testing capacity do not 

appear to significantly alter our estimates of infection growth rates. In Extended Data Fig. 2, we 

show one set of epidemiological estimates
23

 for log(ψit) − log(ψi,t − 1). Despite random day-to-day 

variations, which do not cause systematic biases in our point estimates, the mean of 

log(ψit) − log(ψi,t − 1) is consistently small across the different countries: 0.05 in China, 0.064 in 

Iran, 0.019 in South Korea, −0.058 in France, 0.031 in Italy and 0.049 in the United States. The 

average of these estimates is 0.026, potentially accounting for 7.3% of our global average estimate 

for the no-policy infection growth rate (0.36). These estimates of log(ψit) − log(ψi,t − 1) also do not 

display strong temporal trends, alleviating concerns that time-varying underreporting generates 

sizable biases in our estimated effects of anti-contagion policies. 

Transient dynamics 

In China, we are able to examine the transient response of infection growth rates following policy 

deployment because only three policies were deployed early in a seven-week sample period during 

which we observe many cities simultaneously. This provides us with sufficient data to estimate the 

temporal structure of policy effects without imposing assumptions regarding this structure. To do 

this, we estimate a distributed-lag model that encodes policy parameters using weekly lags based 

on the date that each policy is first implemented in locality i. This means the effect of a policy 

implemented one week ago is allowed to differ arbitrarily from the effect of that same policy in the 

following week, and so on. These effects are then estimated simultaneously and are displayed in 

Fig. 2 (see also Supplementary Table 3). Such a distributed lag approach did not provide 

statistically meaningful insights in other countries using the currently available data because there 

were fewer administrative units and shorter periods of observation (that is, smaller samples), and 

more policies (that is, more parameters to estimate) in all other countries. Future studies may be 

able to successfully explore these dynamics outside of China. 

As a robustness check, we examine whether excluding the transient response from the 

estimated effects of policy substantially alters our results. We do this by estimating a ‘fixed lag’ 

model, in which we assume that policies cannot influence infection growth rates for L days, 
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recoding a policy variable at time t as zero if a policy was implemented fewer than L days before t. 

We reestimate equation (7) for each value of L and present results in Extended Data Fig. 5 and 

Supplementary Table 5. 

Alternative disease models 

Our main empirical specification is motivated with an SIR model of disease contagion, which 

assumes zero latent period between exposure to COVID-19 and infectiousness. If we relax this 

assumption to allow for a latent period of infection, as in a susceptible–exposed–infected–

recovered (SEIR) model, the growth of the outbreak is only asymptotically exponential
11

. 

Nonetheless, we demonstrate that SEIR dynamics have only a minor potential impact on the 

coefficients recovered by using our empirical approach in this context. In Extended Data Figs. 8, 9 

we present results from a simulation exercise which uses equations (9)–(11), along with a 

generalization to the SEIR model
11

 to generate synthetic outbreaks (see Supplementary Methods 

section 2). We use these simulated data to test the ability of our statistical model (equation (7)) to 

recover both the unimpeded growth rate (Extended Data Fig. 8) as well as the impact of simulated 

policies on growth rates (Extended Data Fig. 9) when applied to data generated by SIR or SEIR 

dynamics over a wide range of epidemiological conditions. 

Projections 

Daily growth rates of infections 

To estimate the instantaneous daily growth rate of infections if policies were removed, we obtain 

fitted values from equation (7) and compute a predicted value for the dependent variable when all 

Pc policy variables are set to 0. Thus, these estimated growth rates no policyˆ
citg  capture the effect of all 

locality-specific factors on the growth rate of infections (for example, demographics), 

day-of-week effects, and adjustments based on the way in which infection cases are reported. This 

counterfactual does not account for changes in information that are triggered by policy 

deployment, as those should be considered a pathway through which policies affect outcomes, as 

discussed in the main text. Additionally, the ‘no policy’ counterfactual does not model previously 

unobserved changes in behaviour that might occur if fundamentally new behaviours emerge even 

in the absence of government intervention. When we report an average no-policy growth rate of 

infections (Fig. 2a), it is the average value of these predictions for all observations in the original 
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sample. Location-and-day-specific counterfactual predictions  no policyˆ
citg , accounting for the 

covariance of errors in estimated parameters, are shown as red markers in Fig. 3. 

Cumulative infections 

To provide a sense of scale for the estimated cumulative benefits of effects shown in Fig. 3, we link 

our reduced-form empirical estimates to the key structures in a simple SIR system and simulate 

this dynamical system over the course of our sample. The system is defined as the following: 

d
=

d
t

t t t

S
S I

t
 (9) 

d
= ( )

d
t

t t t

I
S I

t
  (10) 

d
=

d
t

t

R
I

t
 (11) 

where St is the susceptible population and Rt is the removed population. Here βt is a time-evolving 

parameter, determined by our empirical estimates as described below. Accounting for changes in S 

becomes increasingly important as the size of cumulative infections (It + Rt) becomes a substantial 

fraction of the local subnational population, which occurs in some no-policy scenarios. Our 

reduced-form analysis provides estimates for the growth rate of active infections  ĝ  for each 

locality and day, in a regime where St ≈ 1. Thus we know 

1

d
ˆ/ | = =

d
t

t S t t

I
I g

t
   (12) 

but we do not know the values of either of the two right-side terms, which are required to simulate 

equations (9)–(11). To estimate γ, we note that the left-side term of equation (11) is 

d d
(cumulative recoveries cumulative deaths)

d d
tR

t t
   

which we can observe in our data for China and South Korea. Computing first differences in these 

two variables (to differentiate with respect to time), summing them, and then dividing by active 

cases gives us estimates of γ (medians: China = 0.11, South Korea = 0.05). These values differ 

slightly from the classical SIR interpretation of γ, because in the public data that we are able to 

obtain, individuals are coded as ‘recovered’ when they no longer test positive for COVID-19, 

whereas in the classical SIR model this occurs when they are no longer infectious. We adopt the 
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average of these two medians, setting γ = 0.08. We use medians rather than simple averages 

because low values for I induce a long right tail in daily estimates of γ and medians are less 

vulnerable to this distortion. We then use our empirically based reduced-form estimates of ĝ  

(both with and without policy) combined with equations (9)–(11) to project total cumulative cases 

in all countries (Fig. 4). We simulate infections and cases for each administrative unit in our 

sample beginning on the first day for which we observe 10 or more cases (for that unit) using a 

time step of 4 h. Because we observe confirmed cases rather than total infections, we seed each 

simulation by adjusting observed It on the first day using country-specific estimates of case 

detection rates. We adjust existing estimates of case underreporting
23

 to further account for 

asymptomatic infections assuming an infection–fatality ratio of 0.75%
25

. We assume Rt = 0 on the 

first day. To maintain consistency with the reported data, we report our output in confirmed cases 

by multiplying our simulated It + Rt values by the aforementioned proportion of infections 

confirmed. We estimate uncertainty by resampling from the estimated variance–covariance matrix 

of all regression parameters. In Extended Data Fig. 7, we show sensitivity of this simulation to the 

estimated value of γ as well as to the use of a SEIR framework. In Supplementary Table 6, we 

show sensitivity of this simulation to the assumed infection–fatality ratio (see Supplementary 

Methods section 1). 

Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary 

linked to this paper. 

Data availability 

The datasets generated and/or analysed during the current study are available at 

https://github.com/bolliger32/gpl-covid. Future updates and/or extensions to data or code will be 

listed at http://www.globalpolicy.science/covid19. 

Code availability 

For easier replication, we have created a CodeOcean ‘capsule’, which contains a pre-built 

computing environment in addition to the source code and data. This is available at 

https://codeocean.com/capsule/1887579/tree/v1. Future updates and/or extensions to data or code 

will be listed at http://www.globalpolicy.science/covid19. 

https://github.com/bolliger32/gpl-covid
http://www.globalpolicy.science/covid19
https://codeocean.com/capsule/1887579/tree/v1
http://www.globalpolicy.science/covid19
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Extended Data Fig. 1 | Validating disaggregated epidemiological data against aggregated 

data from the JHU Center for Systems Science and Engineering. Comparison of cumulative 

confirmed cases from a subset of regions in our collated epidemiological dataset to the same 

statistics from the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by the 

Johns Hopkins Center for Systems Science and Engineering (JHU CSSE)
46

. We conducted this 

comparison for Chinese provinces and South Korea, for which the data we collected were from 

local administrative units that are more spatially granular than the data in the JHU CSSE database. 

a, In China, we aggregated our city-level data to the province level. b, In South Korea, we 

aggregated province-level data up to the country level. Small discrepancies, especially in later 

periods of the outbreak, are generally due to imported cases (international or domestic) that are 

present in national statistics but that we do not assign to particular cities (in China) or provinces (in 

Korea). 

Extended Data Fig. 2 | Estimated trends in case detection over time within each country. 

Systematic trends in case detection may potentially bias estimates of no-policy infection growth 

rates (see equation (8)). We estimate the potential magnitude of this bias using data from the 

Centre for Mathematical Modelling of Infectious Diseases
23

. Markers indicate daily first 

differences in the logarithm of the fraction of estimated symptomatic cases reported for each 

country over time. The average value over time (solid line and value denoted in panel title) is the 

average growth rate of case detection, equal to the magnitude of the potential bias. For example, in 

the main text we estimate that the infection growth rate in the United States is 0.29 (Fig. 2a), of 
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which growth in case detection might contribute 0.049 (this figure). Sample sizes are 75 in China, 

41 in Iran, 40 in South Korea, 29 in France, 40 in Italy and 32 in the United States. 

Extended Data Fig. 3 | Robustness of the estimated no-policy growth rate of infections and 

the combined effect of policies to withholding blocks of data from entire regions. a, b, For 

each country, we reestimated equation (7) using real data k times, each time withholding one of the 

k first-level administrative regions (‘Adm1’, that is, state or province) in that country. Each grey 

circle is either the estimated no-policy growth rate (a) or the total effect of all policies combined 

(b), from one of these k regressions. Red and blue circles show estimates from the full sample, 

identical to the results presented in Fig. 2a and b, respectively. For each country panel, if a single 

region is influential, the estimated value when it is withheld from the sample will appear as an 

outlier. Some regions that appear influential are highlighted with an open pink circle. As in Fig. 2b, 

we estimate a distributed lag model for China and display each of the estimated weekly lag effects 

(where the pink circle is the same ‘without Hubei’ sample for lags). The full sample includes 3,669 

observations in China, 595 in South Korea, 2,898 in Italy, 548 in Iran, 270 in France and 1,238 in 

the United States. 

Extended Data Fig. 4 | Robustness of the estimated effects of individual policies to 

withholding blocks of data from entire regions. Same as Extended Data Fig. 3, but for 

individual policies (analogous to Fig. 2c). In cases in which two regions are influential, a second 

region is highlighted with an open green circle. The full sample includes 3,669 observations in 

China, 595 in South Korea, 2,898 in Italy, 548 in Iran, 270 in France and 1,238 in the United 

States. 

Extended Data Fig. 5 | Evidence to support models in which policies affect infection growth 

rates in the days following deployment. Existing evidence has not demonstrated whether 

policies should affect infection growth rates in the days immediately after deployment. It is 

therefore not clear ex ante whether the policy variables in equation (7) should be encoded as ‘on’ 

immediately following a policy deployment. We estimate ‘fixed-lag’ models in which a fixed 

delay between the deployment of a policy and its effect is assumed (see Supplementary Methods 

section 3). If a delay model is more consistent with real world infection dynamics, these fixed lag 

models should recover larger estimates for the impact of policies and exhibit better model fit. a, R
2
 

values associated with fixed-lag lengths varying from 0 to 15 days. Centre values represent the R
2
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value in our sample, whiskers are 95% confidence interval computed through resampling with 

replacement. In-sample fit generally declines or remains unchanged if policies are assumed to 

have a delay longer than 4 days. b, Estimated effects for no lag (the model reported in the main 

text) and for fixed lags between 1 and 5 days. Centre values represent the point estimate, error bars 

are 95% confidence intervals. Estimates generally are unchanged or shrink towards zero (for 

example, home isolation in Iran), consistent with mis-coding of post-policy days as no-policy 

days. The sample size is 595 in South Korea, 2,898 in Italy, 548 in Iran, 270 in France and 1,238 in 

the United States. 

Extended Data Fig. 6 | Estimated infection or hospitalization growth rates with actual 

anti-contagion policies and in a no-policy counterfactual scenario. a, The estimated daily 

growth rates of active (China and South Korea) or cumulative (all others) infections based on the 

observed timing of all policy deployments within each subnational unit (blue) and in a scenario in 

which no policies were deployed (red). Identical to Fig. 3, but using an alternative disaggregated 

encoding of policies that does not group any policies into policy packages. The sample size is 

3,669 in China, 595 in South Korea, 2,898 in Italy, 548 in Iran, 270 in France and 1,238 in the 

United States. b, Same as Fig. 3, but equation (7) is implemented for a single example 

administrative unit: Wuhan, China. The sample size is 46 observations. c, Same as Fig. 3, but using 

hospitalization data from France rather than cumulative cases (the French government stopped 

reporting cumulative cases after 25 March 2020). The sample size is 424 observations. For all 

panels, the difference between the with- and no-policy predictions is our estimated effect of actual 

anti-contagion policies on the growth rate of infections (or hospitalizations). The markers are daily 

estimates for each subnational administrative unit (vertical lines are 95% confidence intervals). 

Black circles are observed changes in log(infections) (or diamonds for log(hospitalizations)), 

averaged across observed administrative units. 

Extended Data Fig. 7 | Sensitivity of estimated averted/delayed infections to the choice of γ 

and σ in an SIR/SEIR framework. The sensitivity of total averted/delayed cases presented in 

Fig. 4 to alternative modelling assumptions. We compute total cases across the respective final 

days in our samples for the six countries presented in our analysis. The figure displays how these 

totals vary with eight values of γ (0.05–0.4) and four values of σ (0.2, 0.33, 0.5, ∞), where the final 

value of σ (∞) corresponds to the SI  model. a, The simulated total number of infections under no 

policy. b, Same as in a, but using actual policies. c, The difference between a and b, which is the 
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total number of averted/delayed infections. d, Same as c, but on a logarithmic scale similar to Fig. 

4 (a–c are on a linear scale, trimmed to show details). Figure 4 uses γ = 0.079, which we calculate 

using empirical recovery/death rates in countries for which we observed them (China and South 

Korea; see Methods). If we assume a 14-day delay between infected individuals becoming 

non-infectious and being reported as ‘recovered’ in the data, we would calculate γ = 0.18. Figure 4 

assumes σ = ∞. 

Extended Data Fig. 8 | Simulating reduced-form estimates for the no-policy growth rate of 

infections for different population regimes and disease dynamics. We examine the 

performance of reduced-form econometric estimators through simulations in which different 

underlying disease dynamics are assumed (see Supplementary Information section 3). Each 

histogram shows the distribution of econometrically estimated values across 1,000 simulated 

outbreaks. Estimates are for the no-policy infection growth rate (analogous to Fig. 2a) when three 

different policies are deployed at random moments in time. The black line shows the correct value 

imposed on the simulation and the red histogram shows the distribution of estimates using the 

regression in equation (7), applied to data output from the simulation. The grey dashed line shows 

the mean of this distribution. The 12 subpanels describe the results when various values are 

assigned to the mean infectious period (γ
−1

) and mean latency period (σ
−1

) of the disease. σ = ∞ is 

equivalent to SIR disease dynamics. In each panel, Smin is the minimum susceptible fraction 

observed across all 1,000 45-day simulations shown in each panel. In the real datasets used in the 

main text, after correcting for country-specific underreporting, Smin across all units analysed is 0.72 

and 95% of the analysed units finish with Smin > 0.91. Bias refers to the distance between the 

dashed grey and black line as a percentage of the true value. a, Simulations in near-ideal data 

conditions in which we observe active infections within a large population (such that the 

susceptible fraction of the population remains high during the sample period, similar to those in 

our data for Chongqing, China). b, Simulations in a non-ideal data scenario in which we are only 

able to observe cumulative infections in a small population (similar to those in our sample for 

Cremona, Italy). 

Extended Data Fig. 9 | Simulating reduced form estimates for anti-contagion policy effects 

for different population regimes and assumed disease dynamics. Same as Extended Data Fig. 

8, but estimates are for the combined effect of three different policies (analogous to Fig. 2b) that 

are deployed at random moments in time. a, Simulations in near-ideal data conditions in which we 
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observe active infections within a large population (such that the susceptible fraction of the 

population remains high during the sample period, similar to those in our data for Chongqing, 

China). b, Simulations in a non-ideal data scenario in which we are only able to observe 

cumulative infections in a small population (similar to those in our sample for Cremona, Italy). 

Extended Data Fig. 10 | Regression residuals for the growth rates of COVID-19 by country. 

These plots show the estimated residuals from equation (7) for each country-specific econometric 

model. Histograms (left) show the estimated unconditional probability density function. Quantile 

plots (right) show quantiles of the cumulative density function (y axis) plotted against the same 

quantiles for a normal distribution. For additional details, see Fig. 3 and the ‘Econometric analysis’ 

section of the Methods. 
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Cities begin lifting lockdown policies

23 Jan: Wuhan lockdown begins
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For admin unit
For national average
Observed change
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