Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Desymmetrization of difluoromethylene groups by C–F bond activation


Tertiary stereogenic centres containing one fluorine atom are valuable for medicinal chemistry because they mimic common tertiary stereogenic centres containing one hydrogen atom, but they possess distinct charge distribution, lipophilicity, conformation and metabolic stability1,2,3. Although tertiary stereogenic centres containing one hydrogen atom are often set by enantioselective desymmetrization reactions at one of the two carbon–hydrogen (C–H) bonds of a methylene group, tertiary stereocentres containing fluorine have not yet been constructed by the analogous desymmetrization reaction at one of the two carbon–fluorine (C–F) bonds of a difluoromethylene group3. Fluorine atoms are similar in size to hydrogen atoms but have distinct electronic properties, causing C–F bonds to be exceptionally strong and geminal C–F bonds to strengthen one another4. Thus, exhaustive defluorination typically dominates over the selective replacement of a single C–F bond, hindering the development of the enantioselective substitution of one fluorine atom to form a stereogenic centre5,6. Here we report the catalytic, enantioselective activation of a single C–F bond in an allylic difluoromethylene group to provide a broad range of products containing a monofluorinated tertiary stereogenic centre. By combining a tailored chiral iridium phosphoramidite catalyst, which controls regioselectivity, chemoselectivity and enantioselectivity, with a fluorophilic activator, which assists the oxidative addition of the C–F bond, these reactions occur in high yield and selectivity. The design principles proposed in this work extend to palladium-catalysed benzylic substitution, demonstrating the generality of the approach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to the desymmetrization of methylene units.
Fig. 2: Reaction development and mechanistic studies.
Fig. 3: Scope of nucleophiles and electrophiles that participate in defluorinative alkylation reactions and transformations of the products.
Fig. 4: Selective activation of a single benzylic C–F bond.
Fig. 5: Mechanistic studies support a cation-assisted, turnover-limiting, enantiodetermining and irreversible oxidative addition from a rapidly interconverting mixture of diastereomeric olefin complexes under Curtin–Hammett control.

Data availability

The characterization data are available in the Supplementary Information, together with details about the materials and methods, experimental procedures, mechanistic studies, investigations of reaction conditions, and the design of ligands.


  1. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    CAS  PubMed  Google Scholar 

  2. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    CAS  PubMed  Google Scholar 

  3. Zhu, Y. et al. Modern approaches for asymmetric construction of carbon–fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev. 118, 3887–3964 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    PubMed  Google Scholar 

  5. Stahl, T., Klare, H. F. T. & Oestreich, M. Main-group Lewis acids for C–F bond activation. ACS Catal. 3, 1578–1587 (2013).

    CAS  Google Scholar 

  6. Shen, Q. et al. Review of recent advances in C−F bond activation of aliphatic fluorides. J. Fluor. Chem. 179, 14–22 (2015).

    CAS  Google Scholar 

  7. Franzén, J. et al. A general organocatalyst for direct α-functionalization of aldehydes: stereoselective C−C, C−N, C−F, C−Br, and C−S bond-forming reactions. Scope and mechanistic insights. J. Am. Chem. Soc. 127, 18296–18304 (2005).

    PubMed  Google Scholar 

  8. Smith, A. M. R. & Hii, K. K. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev. 111, 1637–1656 (2011).

    CAS  PubMed  Google Scholar 

  9. Beak, P., Basu, A., Gallagher, D. J., Park, Y. S. & Thayumanavan, S. Regioselective, diastereoselective, and enantioselective lithiation-substitution sequences: reaction pathways and synthetic applications. Acc. Chem. Res. 29, 552–560 (1996).

    CAS  Google Scholar 

  10. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groves, J. T. & Viski, P. Asymmetric hydroxylation by a chiral iron porphyrin. J. Am. Chem. Soc. 111, 8537–8538 (1989).

    CAS  Google Scholar 

  12. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    ADS  CAS  PubMed  Google Scholar 

  13. Nishioka, Y., Uchida, T. & Katsuki, T. Enantio- and regioselective intermolecular benzylic and allylic C−H bond amination. Angew. Chem. Int. Ed. 52, 1739–1742 (2013).

    CAS  Google Scholar 

  14. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp 3)–H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Min, Q. Q., Yin, Z. S., Feng, Z., Guo, W. H. & Zhang, X. G. Highly selective gem-difluoroallylation of organoborons with bromodifluoromethylated alkenes catalyzed by palladium. J. Am. Chem. Soc. 136, 1230–1233 (2014).

    CAS  PubMed  Google Scholar 

  16. An, L., Xiao, Y.-L., Zhang, S. & Zhang, X. Bulky diamine ligand promotes cross-coupling of difluoroalkyl bromides by iron catalysis. Angew. Chem. Int. Ed. 57, 6921–6925 (2018).

    CAS  Google Scholar 

  17. Feng, Z., Xiao, Y.-L. & Zhang, X. Transition-metal (Cu, Pd, Ni)-catalyzed difluoroalkylation via cross-coupling with difluoroalkyl halides. Acc. Chem. Res. 51, 2264–2278 (2018).

    CAS  PubMed  Google Scholar 

  18. An, L., Xu, C. & Zhang, X. Highly selective nickel-catalyzed gem-difluoropropargylation of unactivated alkylzinc reagents. Nat. Commun. 8, 1460 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  19. Xiao, Y.-L., Guo, W.-H., He, G.-Z., Pan, Q. & Zhang, X. Nickel-catalyzed cross-coupling of functionalized difluoromethyl bromides and chlorides with aryl boronic acids: a general method for difluoroalkylated arenes. Angew. Chem. Int. Ed. 53, 9909–9913 (2014).

    CAS  Google Scholar 

  20. Tanaka, J., Suzuki, S., Tokunaga, E., Haufe, G. & Shibata, N. Asymmetric desymmetrization via metal-free C−F bond activation: synthesis of 3,5-diaryl-5-fluoromethyloxazolidin-2-ones with quaternary carbon centers. Angew. Chem. Int. Ed. 55, 9432–9436 (2016).

    CAS  Google Scholar 

  21. Haufe, G. et al. C–F bond activation of unactivated aliphatic fluorides: synthesis of fluoromethyl-3,5-diaryl-2-oxazolidinones by desymmetrization of 2-aryl-1,3-difluoropropan-2-ols. Angew. Chem. Int. Ed. 51, 12275–12279 (2012).

    CAS  Google Scholar 

  22. Nishimine, T. et al. Kinetic resolution of allyl fluorides by enantioselective allylic trifluoromethylation based on silicon-assisted C−F bond cleavage. Angew. Chem. Int. Ed. 53, 517–520 (2014).

    CAS  Google Scholar 

  23. Vogt, D. B., Seath, C. P., Wang, H. & Jui, N. T. Selective C–F functionalization of unactivated trifluoromethylarenes. J. Am. Chem. Soc. 141, 13203–13211 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshida, S., Shimomori, K., Kim, Y. & Hosoya, T. Single C−F bond cleavage of trifluoromethylarenes with an ortho-silyl group. Angew. Chem. Int. Ed. 55, 10406–10409 (2016).

    CAS  Google Scholar 

  25. Fuchibe, K., Oki, R., Hatta, H. & Ichikawa, J. Single C−F bond activation of the CF3 group with a Lewis acid: CF3-cyclopropanes as versatile 4,4-difluorohomoallylating agents. Chem. Eur. J. 24, 17932–17935 (2018).

    CAS  PubMed  Google Scholar 

  26. Amii, H. & Uneyama, K. C−F bond activation in organic synthesis. Chem. Rev. 109, 2119–2183 (2009).

    CAS  PubMed  Google Scholar 

  27. Hartwig, J. F. & Stanley, L. M. Mechanistically driven development of iridium catalysts for asymmetric allylic substitution. Acc. Chem. Res. 43, 1461–1475 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rössler, S. L., Petrone, D. A. & Carreira, E. M. Iridium-catalyzed asymmetric synthesis of functionally rich molecules enabled by (phosphoramidite,olefin) ligands. Acc. Chem. Res. 52, 2657–2672 (2019).

    PubMed  Google Scholar 

  29. Butcher, T. W. & Hartwig, J. F. Enantioselective synthesis of tertiary allylic fluorides by iridium-catalyzed allylic fluoroalkylation. Angew. Chem. Int. Ed. 57, 13125–13129 (2018).

    CAS  Google Scholar 

  30. Trost, B. M. & Lee, C. B. Geminal dicarboxylates as carbonyl surrogates for asymmetric synthesis. Part II. scope and applications. J. Am. Chem. Soc. 123, 3687–3696 (2001).

    CAS  PubMed  Google Scholar 

  31. Madrahimov, S. T. & Hartwig, J. F. Origins of enantioselectivity during allylic substitution reactions catalyzed by metallacyclic iridium complexes. J. Am. Chem. Soc. 134, 8136–8147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hazari, A., Gouverneur, V. & Brown, J. M. Palladium-catalyzed substitution of allylic fluorides. Angew. Chem. Int. Ed. 48, 1296–1299 (2009).

    CAS  Google Scholar 

  33. Benedetto, E. et al. Platinum-catalyzed substitution of allylic fluorides. Organometallics 31, 1408–1416 (2012).

    CAS  Google Scholar 

  34. Pigeon, X. et al. Activation of allylic C−F bonds: palladium-catalyzed allylic amination of 3,3-difluoropropenes. Angew. Chem. Int. Ed. 49, 1123–1127 (2010).

    CAS  Google Scholar 

  35. Shockley, S. E., Hethcox, J. C. & Stoltz, B. M. Enantioselective synthesis of acyclic α-quaternary carboxylic acid derivatives through iridium-catalyzed allylic alkylation. Angew. Chem. Int. Ed. 56, 11545–11548 (2017).

    CAS  Google Scholar 

  36. Jiang, X. & Hartwig, J. F. Iridium-catalyzed enantioselective allylic substitution of aliphatic esters with silyl ketene acetals as the ester enolates. Angew. Chem. Int. Ed. 56, 8887–8891 (2017).

    CAS  Google Scholar 

  37. Blessley, G., Holden, P., Walker, M., Brown, J. M. & Gouverneur, V. Palladium-catalyzed substitution and cross-coupling of benzylic fluorides. Org. Lett. 14, 2754–2757 (2012).

    CAS  PubMed  Google Scholar 

  38. Trost, B. M. & Czabaniuk, L. C. Palladium-catalyzed asymmetric benzylation of 3-aryl oxindoles. J. Am. Chem. Soc. 132, 15534–15536 (2010).

    CAS  PubMed  Google Scholar 

  39. Trost, B. M. & Czabaniuk, L. C. Benzylic phosphates as electrophiles in the palladium-catalyzed asymmetric benzylation of azlactones. J. Am. Chem. Soc. 134, 5778–5781 (2012).

    CAS  PubMed  Google Scholar 

  40. Tabuchi, S., Hirano, K. & Miura, M. Palladium-catalyzed asymmetric benzylic alkylation of active methylene compounds with α-naphthylbenzyl carbonates and pivalates. Angew. Chem. Int. Ed. 55, 6973–6977 (2016).

    CAS  Google Scholar 

  41. Arp, F. O. & Fu, G. C. Catalytic enantioselective Negishi reactions of racemic secondary benzylic halides. J. Am. Chem. Soc. 127, 10482–10483 (2005).

    CAS  PubMed  Google Scholar 

  42. Wisniewska, H. M., Swift, E. C. & Jarvo, E. R. Functional-group-tolerant, nickel-catalyzed cross-coupling reaction for enantioselective construction of tertiary methyl-bearing stereocenters. J. Am. Chem. Soc. 135, 9083–9090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, Q., Srinivas, H. D., Dasgupta, S. & Watson, M. P. Nickel-catalyzed cross-couplings of benzylic pivalates with arylboroxines: stereospecific formation of diarylalkanes and triarylmethanes. J. Am. Chem. Soc. 135, 3307–3310 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank the NSF (CHE-1565886) for financial support. T.W.B. gratefully acknowledges the National Science Foundation Graduate Research Fellowship Program and the UC Berkeley Graduate Research Fellowship Program for support. J.L.Y. gratefully acknowledges a Summer Undergraduate Research Fellowship from the University of California, Berkeley and a summer fellowship from the Rose Hills Foundation. N.D.W. thanks the UC Berkeley Amgen Scholars Program for support. We thank the College of Chemistry’s NMR facility for resources and H. Celik for assistance. Instruments in the CoC-NMR facility are supported in part by NIH S10OD024998.

Author information

Authors and Affiliations



T.W.B. and J.F.H. initiated and designed the overall project. T.W.B., J.L.Y., W.M.A., N.B.W. and N.D.W. conducted the experiments, and T.W.B., J.L.Y., W.M.A., N.B.W., N.D.W. and J.F.H. interpreted the results. T.W.B. conducted the mechanistic experiments and density functional theory calculations. T.W.B. and J.F.H. prepared the manuscript.

Corresponding author

Correspondence to John F. Hartwig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Materials and Methods, Supplementary Text, and Supplementary Figures S1 to S17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butcher, T.W., Yang, J.L., Amberg, W.M. et al. Desymmetrization of difluoromethylene groups by C–F bond activation. Nature 583, 548–553 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing