Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of type 2 diabetes loci in 433,540 East Asian individuals

Abstract

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes—NKX6-3 and ANK1—in different tissues4,5,6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two distinct T2D-association signals at the ANK1NKX6-3 locus are associated with expression levels of two transcripts in two tissues.
Fig. 2: Effect size comparison of lead variants identified in this East Asian T2D GWAS BMI-unadjusted meta-analysis and previous European T2D GWAS meta-analysis2.
Fig. 3: rs117624659 at the NKX6-1 locus exhibits allelic differences in transcriptional activity.

Similar content being viewed by others

Data availability

Summary-level statistics are publicly available on the AGEN consortium website (https://blog.nus.edu.sg/agen/summary-statistics/t2d-2020), and the Accelerating Medicines Partnership T2D portal (http://www.kp4cd.org/dataset_downloads/t2d). A complete list of web resources is available in the Supplementary Information.

References

  1. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suzuki, K. et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet. 51, 379–386 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Moon, Y. S. et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol. Cell. Biol. 22, 5585–5592 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van de Bunt, M. et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8, e55272 (2013).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  5. Scott, L. J. et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat. Commun. 7, 11764 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Civelek, M. et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am. J. Hum. Genet. 100, 428–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Huxley, R. et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes. Rev. 9 (Suppl. 1), 53–61 (2008).

    Article  PubMed  Google Scholar 

  10. Lassiter, D. G., Sjögren, R. J. O., Gabriel, B. M., Krook, A. & Zierath, J. R. AMPK activation negatively regulates GDAP1, which influences metabolic processes and circadian gene expression in skeletal muscle. Mol. Metab. 16, 12–23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoang, C. Q. et al. Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A. Mol. Cell. Biol. 36, 3033–3047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwak, S. H. et al. Nonsynonymous variants in PAX4 and GLP1R are associated with type 2 diabetes in an East Asian population. Diabetes 67, 1892–1902 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Klok, M. D., Jakobsdottir, S. & Drent, M. L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8, 21–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Rasmussen-Torvik, L. J. et al. Associations of body mass index and insulin resistance with leptin, adiponectin, and the leptin-to-adiponectin ratio across ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). Ann. Epidemiol. 22, 705–709 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Imamura, M. et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat. Commun. 7, 10531 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Henseleit, K. D. et al. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development 132, 3139–3149 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Yan, R. et al. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Sci. Rep. 6, 25105 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wen, W. et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum. Mol. Genet. 23, 5492–5504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49, 1458–1467 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 10, e1004235 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hartiala, J. A. et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat. Commun. 7, 10558 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okada, Y. et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat. Commun. 9, 1631 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Xu, F. et al. ALDH2 genetic polymorphism and the risk of type II diabetes mellitus in CAD patients. Hypertens. Res. 33, 49–55 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takeuchi, F. et al. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ. J. 75, 911–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Schrieks, I. C., Heil, A. L., Hendriks, H. F., Mukamal, K. J. & Beulens, J. W. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care 38, 723–732 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Puig, M. et al. Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript. PLoS Genet. 11, e1005495 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Iype, T. et al. The transcriptional repressor Nkx6.1 also functions as a deoxyribonucleic acid context-dependent transcriptional activator during pancreatic beta-cell differentiation: evidence for feedback activation of the nkx6.1 gene by Nkx6.1. Mol. Endocrinol. 18, 1363–1375 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Taylor, B. L., Liu, F. F. & Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep. 4, 1262–1275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spracklen, C. N. et al. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. PLoS Genet. 14, e1007275 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Accelerating Medicines Partnership. Type 2 Diabetes Knowledge Portal http://www.type2diabetesgenetics.org/home/portalHome (2019).

  38. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kameswaran, V. et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 19, 135–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. You, L. et al. Downregulation of long noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells. J. Cell. Physiol. 231, 852–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Y. et al. Overexpression of Pref-1 in pancreatic islet β-cells in mice causes hyperinsulinemia with increased islet mass and insulin secretion. Biochem. Biophys. Res. Commun. 461, 630–635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rhee, M. et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci. Rep. 6, 23960 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, Y. et al. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol. Cell. Endocrinol. 437, 213–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Dou, L. et al. MiR-19a mediates gluconeogenesis by targeting PTEN in hepatocytes. Mol. Med. Rep. 17, 3967–3971 (2018).

    CAS  PubMed  Google Scholar 

  47. Chen, Z. et al. Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity. Mol. Metab. 4, 951–960 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, F., Cheng, L., Xu, J., Guo, F. & Chen, W. miR-17-92 functions as an oncogene and modulates NF-κB signaling by targeting TRAF3 in MGC-803 human gastric cancer cells. Int. J. Oncol. 53, 2241–2257 (2018).

    CAS  PubMed  Google Scholar 

  49. Ma, R. C. & Chan, J. C. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann. NY Acad. Sci. 1281, 64–91 (2013).

    Article  ADS  PubMed  Google Scholar 

  50. Zhu, Y. et al. Racial/ethnic disparities in the prevalence of diabetes and prediabetes by BMI: patient outcomes research to advance learning (PORTAL) multisite cohort of adults in the U.S. Diabetes Care 42, 2211–2219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim, Y., Han, B. G. & the KoGES Group. Cohort profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 46, e20 (2017).

    Article  PubMed  Google Scholar 

  52. Moon, S. et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 9, 1382 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  53. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  54. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).

    Article  Google Scholar 

  56. Ma, C., Blackwell, T., Boehnke, M. & Scott, L. J. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet. Epidemiol. 37, 539–550 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cook, J. P., Mahajan, A. & Morris, A. P. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Genet. 25, 240–245 (2017).

    Article  PubMed  Google Scholar 

  59. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  MATH  PubMed  Google Scholar 

  60. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Magi, R., Lindgren, C. M. & Morris, A. P. Meta-analysis of sex-specific genome-wide association studies. Genet. Epidemiol. 34, 846–853 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Strawbridge, R. J. et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60, 2624–2634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wheeler, E. et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 14, e1002383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. 27, 1122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 50, 956–967 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018).

  79. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  ADS  CAS  Google Scholar 

  80. Ezzat, S. et al. The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes. Cell Metab. 17, 929–940 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miyazaki, J. et al. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J. & Mohlke, K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 10, e1004633 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by subawards (to X.S. and Y.S.C.) from NIDDK U01DK105554 (J. C. Florez). The authors thank all investigators, staff members and study participants for their contributions to all participating studies, including but not limited to: CAGE (T. Ogihara, Y. Yamori, A. Fujioka, C. Makibayashi, S. Katsuya, K. Sugimoto, K. Kamide and R. Morishita); SBCS (R. Courtney, H. Cai, B. Zhang and J. He); and SMC (D.-H. Kim). A full list of funding, and individual and study acknowledgements are available in the Supplementary Information.

Author information

Authors and Affiliations

Authors

Contributions

Project coordination (including supervision of all experiments and analyses): K.L.M. and X.S. Manuscript writing: C.N.S., E.-S.T., M.B., M.H., Y.J.K., K.L., K.L.M., X.S. Core and follow-up analyses including NKX6-1 functional work: C.N.S., M.H., Y.J.K., K.L., A.K.I., H.J.P., S.M.B., K.L.M., X.S. eQTL lookups for ANK1/NKX6-3: M.v.d.B., A.L.G. Core DIAMANTE group: J.E.B. (Hispanic), M.B. (European), D.W.B. (African–American), J.C.C. (South Asian), A.M. (European), M.I.M. (European), M.C.Y.N. (African–American), L.E.P. (Hispanic), W. Zhang (South Asian), A.P.M. (trans-ethnic), K.L.M., X.S. Study-level data analyses: Y.T. (AASC, NAGAHAMA), M.H. (BBJ), K.S. (BBJ), X.S. (BES, DC/SP2, SCHS), F.T. (CAGE-Amagasaki, CAGE-GWAS), M.N. (CAGE-KING), C.N.S. (CHNS, CLHNS), K.L. (CKB), F.B. (CKB), Y.J.K. (KARE, KBA), S. Moon (KBA), C.H.T.T. (HKDR), J.Y. (MESA), X.G. (MESA), J. Long (SBC/SWHS), J.F.C. (SCES), V.J.Y.L. (SiMES), S.-H.K. (SNUH), H.S.C. (SMC), C.-H.C. (TWT2D). Individual cohort study design and/or principal investigators for the individual cohorts: M. Igase (AASC), M.A. (BBJ), S. Maeda (BBJ), T. Kadowaki (BBJ), Y.-X.W. (BES), N.K. (CAGE-Amagasaki, CAGE-GWAS), M.Y. (CAGE-KING), K.L.M. (CHNS, CLHNS), R.G.W. (CKB), E.-S.T. (DC/SP2), J. Lee (KBA), B.-J.K. (KARE, KBA), R.C.W.M. (HKDR), J.I.R. (MESA), F.M. (NAGAHAMA), X.-O.S. (SBC/SWHS), C.-Y.C. (SCES), W.-P.K. (SCHS), T.-Y.W. (SiMES), K.-S.P. (SNUH), Y.S.C. (SMC), W.H.H.S. (TaiChi-G), J.Y.W. (TWT2D) Genotyping and/or phenotyping of the studies: K.K. (AASC), A.T. (BBJ), Y.K. (BBJ), T.Y. (BBJ), Y.O. (BBJ), J.B.J. (BES), T. Katsuya. (CAGE-Amagasaki), M. Isono (CAGE-GWAS), S.I. (CAGE-KING), K. Yamamoto (CAGE-KING), A.-G.H. (CHNS), S.D. (CHNS), W.H. (CHNS), J.S. (CHNS), P.G.-L. (CHNS), C.Y. (CKB), Y.G. (CKB), Z.B. (CKB), J. Lv (CKB), L.L. (CKB), Z.C. (CKB), N.R.L. (CLHNS), L.S.A. (CLHNS), J. Liu (DC/SP2), R.M.v.D. (DC/SP2), S.H. (KBA), K. Yoon (KBA), H.-M.J. (KBA), D.M.S. (KBA), G.J. (HKDR), A.O.L. (HKDR), B.T. (HKDR), W.Y.S. (HKDR), J.C.N.C. (HKDR), M.Y.H. (KARE, KBA), Y.-D.I.C. (MESA), T. Kawaguchi (NAGAHAMA), Y.-B.X. (SBC/SWHS), W. Zheng (SBC/SWHS), L.Z. (SCES), C.-C.K. (SCES), M.A.P. (SCHS), M.G. (SCHS), J.-M.Y. (SCHS), C.S. (SiMES), M.-L.C. (SiMES), M.-S.L. (SMC), C.-M.H. (TaiChi-G), L.-M.C. (TaiChi-G), Y.-J.H. (TaiChi-G), L.-C.C. (TWT2D), Y.-T.C. (TWT2D), F.-J.T. (TWT2D), J.I.R. (MESA).

Corresponding authors

Correspondence to Takashi Kadowaki, Robin G. Walters, Bong-Jo Kim, Karen L. Mohlke or Xueling Sim.

Ethics declarations

Competing interests

M.v.d.B. was supported by a Novo Nordisk postdoctoral fellowship run in partnership with the University of Oxford, and currently a full-time employee of Novo Nordisk. M.I.M and A.M. are currently employees of Genentech. The other authors declare no competing interests.

Additional information

Peer review information Nature thanks Timothy Frayling, Stephen Rich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Flow chart of study design.

The flow chart shows the different data analyses performed and corresponding summary of association results.

Extended Data Fig. 2 Manhattan plot for East Asian T2D meta-analysis association results in model unadjusted for BMI.

−log10P values from two-sided fixed-effect inverse-variance genome-wide meta-analysis association results for each variant (y axis; maximal Neff = 211,793) was plotted against the genomic position (hg19; x axis). Known T2D loci achieving genome-wide significance (P < 5.0 × 10−8) in our meta-analysis are shown in blue. Loci achieving genome-wide significance that were previously unreported for T2D association are shown in red.

Extended Data Fig. 3 The relationship between effect size and minor allele frequency.

Odds ratios (y axis) and minor allele frequencies (x axis) for 189 primary association signals from the T2D BMI-unadjusted models. Odds ratios are from two-sided fixed-effect inverse-variance meta-analysis on a maximal effective sample size of 211,793.

Extended Data Fig. 4 Regional association plots at three T2D-associated loci with the strongest association P values and more than five distinct association signals in East Asian individuals.

a, INS/IGF2/KCNQ1. b, CDKN2A/B. c, PAX4/LEP. −log10P values were from the two-sided fixed-effect inverse-variance meta-analysis. Distinct signals (P < 1.0 × 10−5 from GCTA conditional analyses) were plotted; Neff values for each distinct signal are reported in Supplementary Table 4. Variants are coloured based on East Asian 1000G Phase 3 LD with the lead variants for each association signal shown as diamonds.

Extended Data Fig. 5 Effect size comparison of lead variants in sex-combined models unadjusted and adjusted for BMI.

At 189 lead variants identified in the East Asian BMI-unadjusted sex-combined T2D meta-analysis, per-allele effect sizes (β) from the BMI-adjusted sex-combined model (T2DadjBMI) were plotted against the BMI-unadjusted sex-combined model (T2DunadjBMI). Both sex-combined models were from two-sided fixed-effect inverse-variance meta-analyses and included the same set of studies for comparable sample size. Each point denotes the per-allele effect size; grey lines, s.e. Effect sizes between the two models are highly correlated with a Pearson correlation coefficient r = 0.99 (Supplementary Table 4).

Extended Data Fig. 6 Regional plots of male-specific T2D-associated locus, ALDH2.

For each plot, −log10P values from association results from two-sided fixed-effect inverse-variance meta-analyses for each variant (y axis) were plotted against the genomic position (hg19; x axis). The lead variant rs12231737 plotted is the lead variant from the BMI-unadjusted male-specific meta-analysis (Neff = 65,202) and also the sex-combined meta-analysis (Neff = 138,947) from the same subset of individuals included in the sex-stratified analyses (female-specific Neff = 70,051). This lead variant rs12231737 is in high LD with rs77768175, identified from the larger BMI-unadjusted sex-combined meta-analysis (East Asian r2 = 0.80). Top, males only; middle, sex-combined; bottom, females only. Variants are shaded according to East Asian 1000G Phase 3 LD with the lead variant shown as a purple diamond.

Extended Data Fig. 7 Effect size comparison of common lead variants (MAF ≥ 5%) identified in this East Asian meta-analysis and a previously published European T2D GWAS meta-analysis.

For 278 unique lead variants with MAF ≥ 5% in both the East Asian and European BMI-unadjusted meta-analyses, per-allele effect sizes (β) from the European T2D GWAS meta-analysis2 (y axis) were plotted against per-allele effect sizes from our East Asian meta-analysis (x axis). Effect sizes from both meta-analyses were from two-sided fixed-effect inverse-variance meta-analyses (maximal Neff = 211,793 for East Asian and 231,436 for European meta-analyses). Each point denotes the per-allele effect size; grey lines, s.e. Variants are coloured purple if they were significant in the East Asian meta-analysis only, green if they were significant in the European meta-analysis only, and blue if they were significant in both the East Asian and European meta-analyses (see Methods and Supplementary Table 7).

Extended Data Fig. 8 Effect size comparison of lead variants identified in East Asian BMI-unadjusted meta-analysis and previously published European T2D GWAS meta-analysis.

For 332 lead variants identified from the two BMI-unadjusted meta-analyses, per-allele effect sizes (β) from a European meta-analysis2 (y axis) were plotted against per-allele effect sizes from our East Asian meta-analysis (x axis). Effect sizes from both meta-analyses were from two-sided fixed-effect inverse-variance meta-analysis (maximal Neff = 211,793 for East Asian and 231,436 for European meta-analyses). Each point denotes the per-allele effect size; grey lines, s.e. a, The 152 lead variants that were significant in the East Asian meta-analysis (purple) or both the East Asian and European meta-analyses (blue). b, The 192 lead variants that were significant in the European meta-analysis (green) or both the East Asian and European meta-analyses (blue). These plots include only one variant per locus, in contrast to Fig. 2 and Extended Data Fig. 7.

Extended Data Fig. 9 Forest plots of BMI-unadjusted meta-analysis association results at the SIX3–SIX2 locus.

Odds ratios (black boxes) and 95% confidence intervals (horizontal lines) for T2D associations at the lead East Asian variant (rs12712928) across ancestries of African-American (AFR), East Asian (EAS), European (EUR)2, Hispanic (HIS), and South Asian (SAS) individuals (a); within four major East Asian populations (b; Chinese, Japanese, Korean, and Malay–Filipino, combined due to small sample sizes); and from each contributing cohort (c). Effect sizes from the East Asian study, ancestry, population, and combined meta-analysis were from two-sided fixed-effect inverse-variance meta-analysis. The size of each box is proportional to the sample size of each contributing study, ancestry or population (Supplementary Table 8). Our East Asian study had >90% power to detect the observed association with a MAF = 0.40, OR = 1.06, and 77,418 T2D cases. Given the number of T2D cases and frequency of rs12712928-C within the other data sets, at 80% power, we can reasonably exclude association OR > 1.07 in EUR and OR > 1.15 in AFR, HIS, and SAS between rs12782928 and T2D. Full study names can be found in Supplementary Table 1 and corresponding sample sizes can be found in Supplementary Table 2.

Extended Data Table 1 Novel lead variants associated with type 2 diabetes in East Asian individuals

Supplementary information

Supplementary Information

This file contains Study Descriptions, Supplementary Table legends, a list of Web Resources, Funding and Acknowledgments and Supplementary References.

Reporting Summary

Supplementary Tables

This file contains Supplementary Tables 1-13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spracklen, C.N., Horikoshi, M., Kim, Y.J. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240–245 (2020). https://doi.org/10.1038/s41586-020-2263-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2263-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing