Quantum entanglement between an atom and a molecule

Abstract

Conventional information processors convert information between different physical carriers for processing, storage and transmission. It seems plausible that quantum information will also be held by different physical carriers in applications such as tests of fundamental physics, quantum enhanced sensors and quantum information processing. Quantum controlled molecules, in particular, could transduce quantum information across a wide range of quantum bit (qubit) frequencies—from a few kilohertz for transitions within the same rotational manifold1, a few gigahertz for hyperfine transitions, a few terahertz for rotational transitions, to hundreds of terahertz for fundamental and overtone vibrational and electronic transitions—possibly all within the same molecule. Here we demonstrate entanglement between the rotational states of a 40CaH+ molecular ion and the internal states of a 40Ca+ atomic ion2. We extend methods used in quantum logic spectroscopy1,3 for pure-state initialization, laser manipulation and state readout of the molecular ion. The quantum coherence of the Coulomb coupled motion between the atomic and molecular ions enables subsequent entangling manipulations. The qubit addressed in the molecule has a frequency of either 13.4 kilohertz1 or 855 gigahertz3, highlighting the versatility of molecular qubits. Our work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that our method of quantum control and measurement of molecules will find applications in quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the experiment.
Fig. 2: Energy levels and selected laser-driven transitions.
Fig. 3: Parity measurements of the entangled states.

Data availability

The data that support the findings of this work are available from the corresponding author upon reasonable request.

Code availability

The computer code used to analyse the data is available from the corresponding author upon reasonable request.

References

  1. 1.

    Chou, C.-w. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Bermudez, A. et al. Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X 7, 041061 (2017).

    Google Scholar 

  3. 3.

    Chou, C.-w. et al. Frequency-comb spectroscopy on pure quantum states of a single molecular ion. Science 367, 1458–1461 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gaebler, J. P. et al. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett. 117, 060505 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Levine, H. et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    McConnell, R., Zhang, H., Hu, J., Ćuk, S. & Vuletić, V. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439–442 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  11. 11.

    Luo, X.-Y. et al. Deterministic entanglement generation from driving through quantum phase transitions. Science 355, 620–623 (2017).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  12. 12.

    Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cairncross, W. B. et al. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Altuntaş, E., Ammon, J., Cahn, S. B. & DeMille, D. Demonstration of a sensitive method to measure nuclear-spin-dependent parity violation. Phys. Rev. Lett. 120, 142501 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    ACME Collaboration. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    ADS  Google Scholar 

  18. 18.

    Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  19. 19.

    Moses, S. A., Covey, J. P., Miecnikowski, M. T., Jin, D. S. & Ye, J. New frontiers for quantum gases of polar molecules. Nat. Phys. 13, 13–20 (2017).

    CAS  Google Scholar 

  20. 20.

    Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science 360, 900–903 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    CAS  Google Scholar 

  22. 22.

    Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Reinaudi, G., Osborn, C. B., McDonald, M., Kotochigova, S. & Zelevinsky, T. Optical production of stable ultracold 88Sr2 molecules. Phys. Rev. Lett. 109, 115303 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Preprint at http://arxiv.org/abs/2002.00048 (2020).

  28. 28.

    Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 7, 10385 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Alighanbari, S., Hansen, M. G., Korobov, V. I. & Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 14, 555–559 (2018).

    CAS  Google Scholar 

  31. 31.

    Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sinhal, M., Meir, Z., Najafian, K., Hegi, G. & Willitsch, S. Quantum non-demolition state detection and spectroscopy of single trapped molecules. Science 367, 1213–1218 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hudson, E. R. & Campbell, W. C. Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A 98, 040302 (2018).

    ADS  CAS  Google Scholar 

  35. 35.

    Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Schuster, D. I., Bishop, L. S., Chuang, I. L., DeMille, D. & Schoelkopf, R. J. Cavity QED in a molecular ion trap. Phys. Rev. A 83, 012311 (2011).

    ADS  Google Scholar 

  38. 38.

    Campbell, W. C. & Hudson, E. R. Dipole-phonon quantum logic with trapped polar molecular ions. Preprint at http://arxiv.org/abs/1909.02668 (2019).

  39. 39.

    Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Rugango, R. et al. Sympathetic cooling of molecular ion motion to the ground state. New J. Phys. 17, 035009 (2015).

    ADS  Google Scholar 

  41. 41.

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ding, S. & Matsukevich, D. N. Quantum logic for the control and manipulation of molecular ions using a frequency comb. New J. Phys. 14, 023028 (2012).

    ADS  Google Scholar 

  43. 43.

    Leibfried, D. Quantum state preparation and control of single molecular ions. New J. Phys. 14, 023029 (2012).

    ADS  Google Scholar 

  44. 44.

    Roos, C. F. et al. Nonlinear coupling of continuous variables at the single quantum level. Phys. Rev. A 77, 040302 (2008).

    ADS  Google Scholar 

  45. 45.

    Nie, X. R., Roos, C. F. & James, D. F. V. Theory of cross phase modulation for the vibrational modes of trapped ions. Phys. Lett. A 373, 422–425 (2009).

    ADS  CAS  MATH  Google Scholar 

  46. 46.

    Bartels, A., Oates, C. W., Hollberg, L. & Diddams, S. A. Stabilization of femtosecond laser frequency combs with subhertz residual linewidths. Opt. Lett. 29, 1081–1083 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Merkel, B. et al. Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum. 90, 044702 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Roos, C. F. et al. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547–5550 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Roos, Ch. et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83, 4713–4716 (1999).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Du, J. J. Bollinger and A. L. Collopy for reading and providing feedback on this manuscript, and C. Kurz for help on the experimental setup. This work was supported by the US Army Research Office (grant number W911NF-19-1-0172). Y.L. acknowledges support from the National Key R&D Program of China (grant number 2018YFA0306600), the National Natural Science Foundation of China (grant number 11974330) and Anhui Initiative in Quantum Information Technologies (grant number AHY050000).

Author information

Affiliations

Authors

Contributions

Y.L., C.-w.C., D.R.L. and D.L. conceived and designed the experiments and contributed to the development of experimental methods and pulse sequences. C.-w.C., D.R.L. and D.L. developed components of the experimental apparatus. Y.L. collected and analysed the data. Y.L., C.-w.C. and D.L. wrote the manuscript. All authors provided suggestions for the experiments, discussed the results and contributed to the editing of the manuscript.

Corresponding author

Correspondence to Yiheng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Lawrence Cheuk, Barak Dayan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Leibrandt, D.R., Leibfried, D. et al. Quantum entanglement between an atom and a molecule. Nature 581, 273–277 (2020). https://doi.org/10.1038/s41586-020-2257-1

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.