Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum entanglement between an atom and a molecule

Abstract

Conventional information processors convert information between different physical carriers for processing, storage and transmission. It seems plausible that quantum information will also be held by different physical carriers in applications such as tests of fundamental physics, quantum enhanced sensors and quantum information processing. Quantum controlled molecules, in particular, could transduce quantum information across a wide range of quantum bit (qubit) frequencies—from a few kilohertz for transitions within the same rotational manifold1, a few gigahertz for hyperfine transitions, a few terahertz for rotational transitions, to hundreds of terahertz for fundamental and overtone vibrational and electronic transitions—possibly all within the same molecule. Here we demonstrate entanglement between the rotational states of a 40CaH+ molecular ion and the internal states of a 40Ca+ atomic ion2. We extend methods used in quantum logic spectroscopy1,3 for pure-state initialization, laser manipulation and state readout of the molecular ion. The quantum coherence of the Coulomb coupled motion between the atomic and molecular ions enables subsequent entangling manipulations. The qubit addressed in the molecule has a frequency of either 13.4 kilohertz1 or 855 gigahertz3, highlighting the versatility of molecular qubits. Our work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that our method of quantum control and measurement of molecules will find applications in quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experiment.
Fig. 2: Energy levels and selected laser-driven transitions.
Fig. 3: Parity measurements of the entangled states.

Similar content being viewed by others

Data availability

The data that support the findings of this work are available from the corresponding author upon reasonable request.

Code availability

The computer code used to analyse the data is available from the corresponding author upon reasonable request.

References

  1. Chou, C.-w. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bermudez, A. et al. Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X 7, 041061 (2017).

    Google Scholar 

  3. Chou, C.-w. et al. Frequency-comb spectroscopy on pure quantum states of a single molecular ion. Science 367, 1458–1461 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gaebler, J. P. et al. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett. 117, 060505 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Levine, H. et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. McConnell, R., Zhang, H., Hu, J., Ćuk, S. & Vuletić, V. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439–442 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  11. Luo, X.-Y. et al. Deterministic entanglement generation from driving through quantum phase transitions. Science 355, 620–623 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  12. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  13. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Article  ADS  PubMed  Google Scholar 

  15. Cairncross, W. B. et al. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017).

    Article  ADS  PubMed  Google Scholar 

  16. Altuntaş, E., Ammon, J., Cahn, S. B. & DeMille, D. Demonstration of a sensitive method to measure nuclear-spin-dependent parity violation. Phys. Rev. Lett. 120, 142501 (2018).

    Article  ADS  PubMed  Google Scholar 

  17. ACME Collaboration. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Moses, S. A., Covey, J. P., Miecnikowski, M. T., Jin, D. S. & Ye, J. New frontiers for quantum gases of polar molecules. Nat. Phys. 13, 13–20 (2017).

    Article  CAS  Google Scholar 

  20. Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science 360, 900–903 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Article  CAS  Google Scholar 

  22. Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Reinaudi, G., Osborn, C. B., McDonald, M., Kotochigova, S. & Zelevinsky, T. Optical production of stable ultracold 88Sr2 molecules. Phys. Rev. Lett. 109, 115303 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  25. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Preprint at http://arxiv.org/abs/2002.00048 (2020).

  28. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 7, 10385 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alighanbari, S., Hansen, M. G., Korobov, V. I. & Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 14, 555–559 (2018).

    Article  CAS  Google Scholar 

  31. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sinhal, M., Meir, Z., Najafian, K., Hegi, G. & Willitsch, S. Quantum non-demolition state detection and spectroscopy of single trapped molecules. Science 367, 1213–1218 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Hudson, E. R. & Campbell, W. C. Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A 98, 040302 (2018).

    Article  ADS  CAS  Google Scholar 

  35. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Schuster, D. I., Bishop, L. S., Chuang, I. L., DeMille, D. & Schoelkopf, R. J. Cavity QED in a molecular ion trap. Phys. Rev. A 83, 012311 (2011).

    Article  ADS  CAS  Google Scholar 

  38. Campbell, W. C. & Hudson, E. R. Dipole-phonon quantum logic with trapped polar molecular ions. Preprint at http://arxiv.org/abs/1909.02668 (2019).

  39. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Rugango, R. et al. Sympathetic cooling of molecular ion motion to the ground state. New J. Phys. 17, 035009 (2015).

    Article  ADS  CAS  Google Scholar 

  41. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Ding, S. & Matsukevich, D. N. Quantum logic for the control and manipulation of molecular ions using a frequency comb. New J. Phys. 14, 023028 (2012).

    Article  ADS  CAS  Google Scholar 

  43. Leibfried, D. Quantum state preparation and control of single molecular ions. New J. Phys. 14, 023029 (2012).

    Article  ADS  CAS  Google Scholar 

  44. Roos, C. F. et al. Nonlinear coupling of continuous variables at the single quantum level. Phys. Rev. A 77, 040302 (2008).

    Article  ADS  CAS  Google Scholar 

  45. Nie, X. R., Roos, C. F. & James, D. F. V. Theory of cross phase modulation for the vibrational modes of trapped ions. Phys. Lett. A 373, 422–425 (2009).

    Article  ADS  CAS  MATH  Google Scholar 

  46. Bartels, A., Oates, C. W., Hollberg, L. & Diddams, S. A. Stabilization of femtosecond laser frequency combs with subhertz residual linewidths. Opt. Lett. 29, 1081–1083 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Merkel, B. et al. Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum. 90, 044702 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Roos, C. F. et al. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547–5550 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Roos, Ch. et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83, 4713–4716 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Du, J. J. Bollinger and A. L. Collopy for reading and providing feedback on this manuscript, and C. Kurz for help on the experimental setup. This work was supported by the US Army Research Office (grant number W911NF-19-1-0172). Y.L. acknowledges support from the National Key R&D Program of China (grant number 2018YFA0306600), the National Natural Science Foundation of China (grant number 11974330) and Anhui Initiative in Quantum Information Technologies (grant number AHY050000).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., C.-w.C., D.R.L. and D.L. conceived and designed the experiments and contributed to the development of experimental methods and pulse sequences. C.-w.C., D.R.L. and D.L. developed components of the experimental apparatus. Y.L. collected and analysed the data. Y.L., C.-w.C. and D.L. wrote the manuscript. All authors provided suggestions for the experiments, discussed the results and contributed to the editing of the manuscript.

Corresponding author

Correspondence to Yiheng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Lawrence Cheuk, Barak Dayan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Leibrandt, D.R., Leibfried, D. et al. Quantum entanglement between an atom and a molecule. Nature 581, 273–277 (2020). https://doi.org/10.1038/s41586-020-2257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2257-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing