Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin squeezing of 1011 atoms by prediction and retrodiction measurements

Abstract

The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit1, which is proportional to \(1/\sqrt{N}\). This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states2. Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 1011 rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states3,4 to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments5,6,7,8,9,10, with a corresponding angular variance of the squeezed collective spin of 4.6 × 10−13 radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Experiment results.
Fig. 3: Squeezing versus total squeezing pulse duration in two- and three-pulse schemes.
Fig. 4: PQS-enhanced magnetometry.

Data availability

The datasets generated and analysed during this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Wiseman. H. M & Milburn, G. Quantum Measurement and Control (Cambridge Univ. Press, 2010).

  3. 3.

    Gammelmark, S., Julsgaard, B. & Mølmer, K. Past quantum states of a monitored system. Phys. Rev. Lett. 111, 160401 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    Zhang, J. & Mølmer, K. Prediction and retrodiction with continuously monitored Gaussian states. Phys. Rev. A 96, 062131 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Chaudhury, S. et al. Quantum control of the hyperfine spin of a Cs atom ensemble. Phys. Rev. Lett. 99, 163002 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    Vasilakis, G. et al. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement. Nat. Phys. 11, 389–392 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Mølmer, K. & Madsen, L. B. Estimation of a classical parameter with Gaussian probes: magnetometry with collective atomic spins. Phys. Rev. A 70, 052102 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Aharonov, Y. & Vaidman, L. Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11–20 (1990).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. 14.

    Aharonov, Y. & Vaidman, L. Complete description of a quantum system at a given time. J. Phys. A 24, 2315–2328 (1991).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Rybarczyk, T. et al. Forward-backward analysis of the photon-number evolution in a cavity. Phys. Rev. A 91, 062116 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Tan, D., Weber, S. J., Siddiqi, I., Mølmer, K. & Murch, K. W. Prediction and retrodiction for a continuously monitored superconducting qubit. Phys. Rev. Lett. 114, 090403 (2015).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Rossi, M., Mason, D., Chen, J. & Schliesser, A. Observing and verifying the quantum trajectory of a mechanical resonator. Phys. Rev. Lett. 123, 163601 (2019).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Shah, V., Vasilakis, G. & Romalis, M. V. High bandwidth atomic magnetometery with continuous quantum nondemolition measurements. Phys. Rev. Lett. 104, 013601 (2010).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Martin Ciurana, F., Colangelo, G., Slodička, L., Sewell, R. J. & Mitchell, M. W. Entanglement-enhanced radio-frequency field detection and waveform sensing. Phys. Rev. Lett. 119, 043603 (2017).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Smiciklas, M., Brown, J. M., Cheuk, L. W., Smullin, S. J. & Romalis, M. V. New test of local Lorentz invariance using a 21Ne-Rb-K comagnetometer. Phys. Rev. Lett. 107, 171604 (2011).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Bear, D., Stoner, R. E., Walsworth, R. L., Kostelecky, V. A. & Lane, C. D. Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser. Phys. Rev. Lett. 85, 5038 (2000).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Khalili, F. Ya. & Polzik, E. S. Overcoming the standard quantum limit in gravitational wave detectors using spin systems with a negative effective mass. Phys. Rev. Lett. 121, 031101 (2018).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Kong, J., Jiménez-Martínez, J., Troullinou, C., Lucivero, V. G. & Mitchell, M. W. Measurement-induced nonlocal entanglement in a hot, strongly-interacting atomic system. Preprint at http://arXiv.org/quant-ph/1804.07818 (2018).

  25. 25.

    Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Balabas, M. V., Karaulanov, T., Ledbetter, M. P. & Budker, D. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Borregaard, J. & Sorensen, A. S. Near-Heisenberg-limited atomic clocks in the presence of decoherence. Phys. Rev. Lett. 111, 090801 (2013).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Braverman, B. et al. Near-unitary spin squeezing in Yb-171. Phys. Rev. Lett. 122, 223203 (2019).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Wang, M. F. et al. Two-axis-twisting spin squeezing by multipass quantum erasure. Phys. Rev. A 96, 013823 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Takeuchi, M. et al. Spin squeezing via one-axis twisting with coherent light. Phys. Rev. Lett. 94, 023003 (2005).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Tsang, M. Time-symmetric quantum theory of smoothing. Phys. Rev. Lett. 102, 250403 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Bell, W. E. & Bloom, A. L. Optically driven spin precession. Phys. Rev. Lett. 6, 280–281 (1961).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Shen, H. Spin Squeezing and Entanglement with Room Temperature Atoms for Quantum Sensing and Communication. PhD thesis, Univ. of Copenhagen (2015).

  36. 36.

    Julsgaard, B., Sherson, J., Sørensen, J. L. & Polzik, E. S. Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method. J. Opt. B 6, 5–14 (2004).

    ADS  Article  Google Scholar 

  37. 37.

    Yonezawa, H. et al. Quantum-enhanced optical-phase tracking. Science 337, 1514–1517 (2012).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  38. 38.

    Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).

    ADS  CAS  Article  Google Scholar 

  39. 39.

    André, A., Sørensen, A. S. & Lukin, M. D. Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92, 230801 (2004).

    ADS  Article  Google Scholar 

  40. 40.

    Auzinsh, M. et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).

    ADS  CAS  Article  Google Scholar 

  41. 41.

    Braverman, B., Kawasaki, A. & Vuletić, V. Impact of non-unitary spin squeezing on atomic clock performance. New J. Phys. 20, 103019 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Budker, D. & Kimball, D. F. J. Optical Magnetometry (Cambridge Univ. Press, 2013).

  43. 43.

    Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596 (2003).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Jensen, K. Quantum Information, Entanglement and Magnetometry with Macroscopic Gas Samples and Non-Classical Light. PhD thesis, Univ. of Copenhagen (2011).

Download references

Acknowledgements

We thank M. Balabas for assistance in the vapour cell fabrication and V. Vuletić for discussions. This work is supported by the National Key Research Program of China under grants 2016YFA0302000 and 2017YFA0304204, and the NNSFC under grants 61675047 and 91636107. K.M. acknowledges support from the Villum Foundation. H.S. acknowledges financial support from a UK Royal Society Newton International Fellowship (NF170876).

Author information

Affiliations

Authors

Contributions

K.M., H.S. and Y.X. conceived the idea. H.B., J.D., S.J., X.L., P.L., I.N., E.E.M., H.S. and Y.X. designed the experiment, performed the measurements and analysed the data together with all other authors. K.-F.Z. helped with the fabrication and characterization of vapour cells. H.B., M.W. and H.S. carried out the theoretical analysis under K.M.’s supervision. H.B., H.S., K.M. and Y.X. wrote the manuscript with contributions from all other authors. H.S. and Y.X. supervised the project.

Corresponding authors

Correspondence to Klaus Mølmer, Heng Shen or Yanhong Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Julian Martinez-Rincon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Magneto-optical resonance signal.

a, Spin response to an RF pulse. X and Y are the outputs of the lock-in amplifier, with a π/2 phase difference between them. \(R=\sqrt{{X}^{2}+{Y}^{2}}\) is the demodulated amplitude. b, The associated Fourier transformation of the spin response signal. fLar is the centre frequency for demodulation, with the subscript ‘Lar’ representing ‘Larmor frequency’. f is the actual frequency of the signal before demodulation. f − fLar represents the frequency of the signal after demodulation, that is, at the lock-in amplifier output. Inset, energy levels of 87Rb. All the atoms are pumped into the F = 2, mF = −2 state, so that they are oriented along x. The magnetic field leads to a splitting of the magnetic sublevels by the Larmor frequency ΩL. A.U., arbitrary units.

Extended Data Fig. 2 Measured photon shot noise with different probe powers.

Red circles are experimental data and the dashed line represents the linear fit of the data. PSN, photon shot noise.

Extended Data Fig. 3 Spin noise versus atom number.

a, Effective coupling constant \({\tilde{\kappa }}^{2}\) as a function of the number of atoms. The values of \({\tilde{\kappa }}^{2}\) are derived from the spin noise of the thermal state. b, Spin noise of prepared CSS versus the number of atoms. The observed linear dependence proves that technical noise is mostly suppressed and the measured spin noise is at the projection noise limit (PNL).

Extended Data Fig. 4 Calibration of the applied RF magnetic field.

a, Calibration using the displacement of atomic spins. b, Calibration using a small pickup coil. The amplitude of the RF output in our detection experiment is −97 dB m, which lies at the bottom left of the figure. In both curves, a slope near 1 indicates a good linear relation.

Supplementary information

Supplementary Information

This file contains Supplementary Information for Squeezed spin of 10^11 atoms by prediction and retrodiction measurements. The file includes the experimental detail and details on theory.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Duan, J., Jin, S. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020). https://doi.org/10.1038/s41586-020-2243-7

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing