Engineering covalently bonded 2D layered materials by self-intercalation

Abstract

Two-dimensional (2D) materials1,2,3,4,5 offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants6,7; however, post-growth intercalation has usually been limited to alkali metals8,9,10. Here we show that the self-intercalation of native atoms11,12 into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites7,13. By performing growth under high metal chemical potential14,15 we can access a range of tantalum-intercalated TaS(Se)y, including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Self-intercalation in TaS2 crystals.
Fig. 2: Compositional engineering of TaxSy and TaxSey with different concentrations of intercalated Ta.
Fig. 3: Ferromagnetism in Ta-intercalated Ta7S12 ic-2D crystals.
Fig. 4: A library of ic-2D crystals.

Data availability

The main data supporting the findings of this study are available within the paper and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

Code availability

The Python code is available in the Supplementary Information.

References

  1. 1.

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    PubMed  Google Scholar 

  2. 2.

    Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    CAS  PubMed  ADS  Google Scholar 

  3. 3.

    Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    CAS  PubMed  ADS  Google Scholar 

  4. 4.

    Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS  PubMed  ADS  Google Scholar 

  5. 5.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  PubMed  ADS  Google Scholar 

  6. 6.

    Wan, J. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Friend, R. H. & Yoffe, A. D. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).

    CAS  ADS  Google Scholar 

  8. 8.

    Wang, X., Shen, X., Wang, Z., Yu, R. & Chen, L. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8, 11394–11400 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Tan, S. J. R. et al. Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J. Am. Chem. Soc. 139, 2504–2511 (2017).

    CAS  PubMed  Google Scholar 

  10. 10.

    Kanetani, K. et al. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca. Proc. Natl Acad. Sci. USA 109, 19610–19613 (2012).

    CAS  PubMed  ADS  Google Scholar 

  11. 11.

    Yang, J. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019).

    CAS  PubMed  ADS  Google Scholar 

  12. 12.

    Cui, F. et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 32, 1905896 (2020).

    CAS  Google Scholar 

  13. 13.

    Mortazavi, M., Wang, C., Deng, J., Shenoy, V. B. & Medhekar, N. V. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 268, 279–286 (2014).

    CAS  ADS  Google Scholar 

  14. 14.

    Fu, D. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Chen, J. et al. Homoepitaxial growth of large-scale highly organized transition metal dichalcogenide patterns. Adv. Mater. 30, 1704674 (2018).

    Google Scholar 

  16. 16.

    Liao, M. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 9, 4068 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  17. 17.

    Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    CAS  PubMed  Google Scholar 

  18. 18.

    Guilmeau, E., Barbier, T., Maignan, A. & Chateigner, D. Thermoelectric anisotropy and texture of intercalated TiS2. Appl. Phys. Lett. 111, 133903 (2017).

    ADS  Google Scholar 

  19. 19.

    Wang, M. et al. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Mater. 5, 045005 (2018).

    CAS  Google Scholar 

  20. 20.

    Dungey, K. E., Curtis, M. D. & Penner-Hahn, J. E. Structural characterization and thermal stability of MoS2 intercalation compounds. Chem. Mater. 10, 2152–2161 (1998).

    CAS  Google Scholar 

  21. 21.

    Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    CAS  PubMed  ADS  Google Scholar 

  22. 22.

    Chen, Z. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 8, 14548 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. 23.

    Liu, C. et al. Dynamic Ag+-intercalation with AgSnSe2 nano-precipitates in Cl-doped polycrystalline SnSe2 toward ultra-high thermoelectric performance. J. Mater. Chem. A 7, 9761–9772 (2019).

    CAS  Google Scholar 

  24. 24.

    Bouwmeester, H. J. M., van der Lee, A., van Smaalen, S. & Wiegers, G. A. Order–disorder transition in silver-intercalated niobium disulfide compounds. II. Magnetic and electrical properties. Phys. Rev. B 43, 9431–9435 (1991).

    CAS  ADS  Google Scholar 

  25. 25.

    Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

    CAS  PubMed  ADS  Google Scholar 

  26. 26.

    Jeong, S. et al. Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nat. Commun. 6, 5763 (2015).

    CAS  PubMed  ADS  Google Scholar 

  27. 27.

    O’Brien, E. S. et al. Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal. Nat. Chem. 9, 1170–1174 (2017).

    PubMed  Google Scholar 

  28. 28.

    Kumar, P., Skomski, R. & Pushpa, R. Magnetically ordered transition-metal-intercalated WSe2. ACS Omega 2, 7985–7990 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim, S. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv. Mater. 30, 1705542 (2018).

    ADS  Google Scholar 

  30. 30.

    Zhang, M. et al. Electron density optimization and the anisotropic thermoelectric properties of Ti self-intercalated Ti1+xS2 compounds. ACS Appl. Mater. Interfaces 10, 32344–32354 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Wang, S. et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26, 6371–6379 (2014).

    CAS  Google Scholar 

  32. 32.

    Zhao, X. et al. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 18, 482–490 (2018).

    CAS  PubMed  ADS  Google Scholar 

  33. 33.

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    CAS  PubMed  ADS  Google Scholar 

  34. 34.

    Azizi, A. et al. Spontaneous formation of atomically thin stripes in transition metal dichalcogenide monolayers. Nano Lett. 16, 6982–6987 (2016).

    CAS  PubMed  ADS  Google Scholar 

  35. 35.

    Motome, Y., Furukawa, N. & Nagaosa, N. Competing orders and disorder-induced insulator to metal transition in manganites. Phys. Rev. Lett. 91, 167204 (2003).

    PubMed  ADS  Google Scholar 

  36. 36.

    Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426, 162–165 (2003).

    CAS  PubMed  ADS  Google Scholar 

  37. 37.

    Jiang, Z. et al. Structural and proximity-induced ferromagnetic properties of topological insulator-magnetic insulator heterostructures. AIP Adv. 6, 055809 (2016).

    ADS  Google Scholar 

  38. 38.

    Jiang, Z. et al. Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach. Nano Lett. 15, 5835–5840 (2015).

    CAS  PubMed  ADS  Google Scholar 

  39. 39.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Google Scholar 

  40. 40.

    Zener, C. Interaction between the d shells in the transition metals. Phys. Rev. 81, 440–444 (1951).

    CAS  MATH  ADS  Google Scholar 

  41. 41.

    Coelho, P. M. et al. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123, 14089–14096 (2019).

    CAS  Google Scholar 

  42. 42.

    Haastrup, S. et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).

    CAS  Google Scholar 

  43. 43.

    Karthikeyan, J., Komsa, H.-P., Batzill, M. & Krasheninnikov, A. V. Which transition metal atoms can be embedded into two-dimensional molybdenum dichalcogenides and add magnetism? Nano Lett. 19, 4581–4587 (2019).

    CAS  PubMed  ADS  Google Scholar 

  44. 44.

    Wang, H. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 8, 394 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  45. 45.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab Initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  ADS  Google Scholar 

  46. 46.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  ADS  Google Scholar 

  47. 47.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    MathSciNet  ADS  Google Scholar 

  48. 48.

    Dudarev, S. L. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    CAS  ADS  Google Scholar 

  49. 49.

    Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    CAS  PubMed  ADS  Google Scholar 

  50. 50.

    Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

K.P.L. thanks A*STAR Project ‘Scalable Growth of Ultrathin Ferroelectric Materials for Memory Technologies’ (grant number A1983c0035) and support from the Centre for Advanced 2D Materials, National University of Singapore. W.Z. acknowledges support from the National Key R&D Program of China (2018YFA0305800) and the Natural Science Foundation of China (51622211). S.J.P. is grateful to the National University of Singapore for funding and the Ministry of Education (MOE) for a Tier 2 grant ‘Atomic scale understanding and optimization of defects in 2D materials’ (MOE2017-T2-2-139). Z.L. thanks the MOE for a Tier 2 grant (2017-T2-2-136) and a Tier 3 grant (2018-T3-1-002), and the A*STAR QTE programme. X.L. acknowledges support from the National Natural Science Foundation of China (grant number 11804286) and the Fundamental Research Funds for the Central Universities (grant number 19lgpy263). DFT calculations were performed using resources of the National Supercomputer Center in Guangzhou supported by the Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund (second phase). K.S.T. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant number 773122, LIMA). The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation, project DNRF103. We thank J. P. Shi, F. F. Cui and Y. F. Zhang for providing high-quality CVD samples.

Author information

Affiliations

Authors

Contributions

X.Z., S.J.P. and K.P.L. conceived the idea. S.J.P. and K.P.L. supervised the execution of the whole work. X.Z. and W.Z. performed the electron microscopy experiments and data analysis. X.L., A.C.R.-J. and C.W. performed the DFT calculations and data analysis. A.C.R.-J. and K.S.T. performed the high-throughput DFT calculations. W.F., Y.D., L.K. and Z.L. grew the samples. D.W. and T.V. measured the magnetism. P.S. performed device fabrication and measurement. J.D. and S.N. developed the Python scripts for data analysis. All authors discussed the results and participated in writing the manuscript.

Corresponding authors

Correspondence to Xin Luo or Stephen J. Pennycook or Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Thomas Heine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, including Supplementary Figures 1-41, Supplementary Tables 1-3 and Supplementary References.

Supplementary Data

This file contains the Phython Code.

Video 1: Migration dynamics of intercalated Ta atoms.

The migration paths of intercalated Ta atoms were in situ tracked by sequential STEM imaging under the e-beam irradiation.

Video 2: Migration dynamics of surface Ta atoms.

The migration paths of intercalated Ta atoms were in situ tracked by sequential STEM imaging under the e-beam irradiation. The mobility of surface Ta atoms are much higher than that of intercalated Ta atoms.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Song, P., Wang, C. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020). https://doi.org/10.1038/s41586-020-2241-9

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing