Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detection of metastable electronic states by Penning trap mass spectrometry

Abstract

State-of-the-art optical clocks1 achieve precisions of 10−18 or better using ensembles of atoms in optical lattices2,3 or individual ions in radio-frequency traps4,5. Promising candidates for use in atomic clocks are highly charged ions6 (HCIs) and nuclear transitions7, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range8 that are accessible to frequency combs9. However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10−11—an improvement by a factor of ten compared with previous measurements10,11. With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 × 1016 hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 × 10−8 hertz and one of the highest electronic quality factors (1024) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions8,12 in HCIs, which are required for precision studies of fundamental physics6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Results of the Re measurements at PENTATRAP.
Fig. 2: The 4d10 ground state and relevant 4d94f excited electronic states of the 187Re29+ ion.

Data availability

The datasets analysed in this study are available from the corresponding author.

Code availability

The experimental data were analysed using OriginLab and a self-written analysis script, which is available from the corresponding author. The Quanty code and its documentation are available from http://www.quanty.org. MCDHF 1 is described in ref. 51 and MCDHF 2 in ref. 55.

References

  1. 1.

    Ludlow, A. D. et al. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  CAS  Google Scholar 

  2. 2.

    Katori, H. Optical lattice clocks and quantum metrology. Nat. Photon. 5, 203–210 (2011).

    ADS  CAS  Google Scholar 

  3. 3.

    Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    ADS  CAS  PubMed  Google Scholar 

  4. 4.

    Brewer, S. M. et al. An 27Al+ quantum-logic clock with systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Nicholson, T. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 6, 6896 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kozlov, M. G., Safronova, M. S., Crespo López-Urrutia, J. R. & Schmidt, P. O. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys. 90, 045005 (2018).

    ADS  CAS  Google Scholar 

  7. 7.

    Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    ADS  CAS  PubMed  Google Scholar 

  8. 8.

    Nauta, J. et al. Towards precision measurements on highly charged ions using a high harmonic generation frequency comb. Nucl. Instrum. Methods Phys. Res. B 408, 285–288 (2017).

    ADS  CAS  Google Scholar 

  9. 9.

    Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    ADS  PubMed  Google Scholar 

  10. 10.

    Shi, W., Redshaw, M. & Myers, E. G. Atomic masses of 32,33S, 84,86Kr, and 129,132Xe with uncertainties ≤1 ppb. Phys. Rev. A 72, 022510 (2005).

    ADS  Google Scholar 

  11. 11.

    Eliseev, S. et al. Direct measurement of the mass difference of 163Ho and 163Dy solves the Q-value puzzle for the neutrino mass determination. Phys. Rev. Lett. 115, 062501 (2015).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Crespo López-Urrutia, J. R. Frequency metrology using highly charged ions. J. Phys. Conf. Ser. 723, 012052 (2016).

    Google Scholar 

  13. 13.

    Ushijima, I. et al. Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015).

    ADS  CAS  Google Scholar 

  14. 14.

    Huntemann, N. et al. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Mehlstäubler, T. E. et al. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).

    ADS  PubMed  Google Scholar 

  17. 17.

    Safronova, M. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  18. 18.

    Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    CAS  Google Scholar 

  19. 19.

    McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    ADS  CAS  PubMed  Google Scholar 

  20. 20.

    Ong, A., Berengut, J. C. & Flambaum, V. V. in Fundamental Physics in Particle Traps 293 (Springer, 2014).

  21. 21.

    Dzuba, V. A. & Flambaum, V. V. Highly charged ions for atomic clocks and search for variation of the fine structure constant. Hyperfine Interact. 236, 79–86 (2015).

    ADS  CAS  Google Scholar 

  22. 22.

    Gillaspy, J. D. Highly charged ions. J. Phys. B 34, R39 (2001).

    Google Scholar 

  23. 23.

    Klaft, I. et al. Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike 209Bi82+. Phys. Rev. Lett. 73, 2425–2427 (1994).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Morgan, C. A. et al. Observation of visible and UV magnetic dipole transitions in highly charged xenon and barium. Phys. Rev. Lett. 74, 1716–1719 (1995).

    ADS  CAS  PubMed  Google Scholar 

  25. 25.

    Crespo López-Urrutia, J. R., Beiersdorfer, P., Savin, D. & Widmann, K. Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike 165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77, 826–829 (1996).

    ADS  PubMed  Google Scholar 

  26. 26.

    Schiller, S. Hydrogenlike highly charged ions for tests of the time independence of fundamental constants. Phys. Rev. Lett. 98, 180801 (2007).

    ADS  CAS  PubMed  Google Scholar 

  27. 27.

    Crespo López-Urrutia, J. R. The visible spectrum of highly charged ions: a window to fundamental physics. Can. J. Phys. 86, 111–123 (2008).

    ADS  Google Scholar 

  28. 28.

    Berengut, J. C., Dzuba, V. A., Flambaum, V. V. & Ong, A. Highly charged ions with E1, M1, and E2 transitions within laser range. Phys. Rev. A 86, 022517 (2012).

    ADS  Google Scholar 

  29. 29.

    Schippers, S. et al. Storage-ring measurement of the hyperfine induced 47Ti18+(2s2p 3P 0 → 2s 2 1S 0) transition rate. Phys. Rev. Lett. 98, 033001 (2007).

    ADS  CAS  PubMed  Google Scholar 

  30. 30.

    Träbert, E. et al. Time-resolved soft-X-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions. Phys. Rev. A 73, 022508 (2006).

    ADS  Google Scholar 

  31. 31.

    Träbert, E., Beiersdorfer, P. & Brown, G. V. Observation of hyperfine mixing in measurements of a magnetic octupole decay in isotopically pure nickel-like 129Xe and 132Xe ions. Phys. Rev. Lett. 98, 263001 (2007).

    ADS  PubMed  Google Scholar 

  32. 32.

    Ritz, W. On a new law of series spectra. Astrophys. J. 28, 237–243 (1908).

    ADS  Google Scholar 

  33. 33.

    Gu, M. F. The flexible atomic code. Can. J. Phys. 86, 675–689 (2008).

    ADS  CAS  Google Scholar 

  34. 34.

    Brown, L. S. & Gabrielse, G. Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986).

    ADS  CAS  Google Scholar 

  35. 35.

    Zschornak, G. et al. Dresden Electron Beam Ion Sources: Latest Developments. Technical Report (Technische Universität Dresden & DREEBIT GmbH, 2009); https://www.researchgate.net/publication/228896380_DRESDEN_ELECTRON_BEAM_ION_SOURCES_LATEST_DEVELOPMENTS.

  36. 36.

    Koivisto, H., Arje, J. & Nurmia, M. Metal ions from the volatile compounds method for the production of metal ion beams. Rev. Sci. Instrum. 69, 785–787 (1998).

    ADS  CAS  Google Scholar 

  37. 37.

    Roux, C. et al. The trap design of PENTATRAP. Appl. Phys. B 107, 997–1005 (2012).

    ADS  CAS  Google Scholar 

  38. 38.

    Repp, J. et al. PENTATRAP: a novel cryogenic multi-Penning-trap experiment for high-precision mass measurements on highly charged ions. Appl. Phys. B 107, 983–996 (2012).

    ADS  CAS  Google Scholar 

  39. 39.

    Cornell, E. A. et al. Single-ion cyclotron resonance measurement of \(M({{\rm{CO}}}^{+})/M({{\rm{N}}}_{2}^{+})\). Phys. Rev. Lett. 63, 1674–1677 (1989).

    ADS  CAS  PubMed  Google Scholar 

  40. 40.

    Feng, X. et al. Tank circuit model applied to particles in a Penning trap. J. Appl. Phys. 79, 8–13 (1996).

    ADS  CAS  Google Scholar 

  41. 41.

    Karthein, J. et al. QEC-value determination for 21Na →21Ne and 23Mg → 23Na mirror-nuclei decays using high-precision mass spectrometry with ISOLTRAP at the CERN ISOLDE facility. Phys. Rev. C 100, 015502 (2019).

    ADS  CAS  Google Scholar 

  42. 42.

    Birge, R. T. The calculation of errors by the method of least squares. Phys. Rev. 40, 207–227 (1932).

    ADS  MATH  Google Scholar 

  43. 43.

    Smorra, C. et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371–374 (2017).

    ADS  CAS  PubMed  Google Scholar 

  44. 44.

    Grant, I. P. Relativistic calculation of atomic structures. Adv. Phys. 19, 747–811 (1970).

    ADS  CAS  Google Scholar 

  45. 45.

    Desclaux, J. P., Mayers, D. F. & O’Brien, F. Relativistic atomic wave functions. J. Phys. B 4, 631–642 (1971).

    ADS  CAS  Google Scholar 

  46. 46.

    Haverkort, M. W. Quanty for core level spectroscopy – excitons, resonances and band excitations in time and frequency domain. J. Phys. Conf. Ser. 712, 012001 (2016).

    Google Scholar 

  47. 47.

    Indelicato, P., Parente, F. & Marrus, R. Effect of hyperfine structure on the 23P 1 and the 23P 0 lifetime in heliumlike ions. Phys. Rev. A 40, 3505–3514 (1989).

    ADS  CAS  Google Scholar 

  48. 48.

    Gould, H., Marrus, R. & Mohr, P. Radiative decay of the 23S 1 and 23P 2 states of heliumlike vanadium (Z = 23) and iron (Z = 26). Phys. Rev. Lett. 33, 676–680 (1974).

    ADS  CAS  Google Scholar 

  49. 49.

    Indelicato, P. et al. Hyperfine quenching and precision measurement of the 23P 0 − 23P 1 fine structure splitting in heliumlike gadolinium (Gd62+). Phys. Rev. Lett. 68, 1307–1310 (1992).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Birkett, B. et al. Hyperfine quenching and measurement of the 23P 0 − 23P 1 fine-structure splitting in heliumlike silver (Ag45+). Phys. Rev. A 47, R2454–R2457 (1993).

    ADS  CAS  PubMed  Google Scholar 

  51. 51.

    Indelicato, P. & Desclaux, J. MCDFGME: a multiconfiguration Dirac–Fock and general matrix elements program (2005).

  52. 52.

    Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743–1757 (1999).

    ADS  CAS  Google Scholar 

  53. 53.

    Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    ADS  CAS  Google Scholar 

  54. 54.

    Shabaev, V. M., Tupitsyn, I. I. & Yerokhin, V. A. QED-MOD: Fortran program for calculating the model Lamb-shift operator. Comput. Phys. Commun. 189, 175–181 (2015).

    ADS  CAS  Google Scholar 

  55. 55.

    Froese Fischer, C., Gaigalas, G., Jönsson, P. & Bierón, J. GRASP2018 – a Fortran 95 version of the General Relativistic Atomic Structure Package. Comput. Phys. Commun. 237, 184–187 (2019).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This article comprises parts of the PhD thesis work of H.C., to be submitted to Heidelberg University, Germany. This work is supported by the German Research Foundation (DFG) Collaborative Research Centre SFB 1225 (ISOQUANT) and by the DFG Research UNIT FOR 2202. P.I. acknowledges partial support from NIST. Laboratoire Kastler Brossel (LKB) is supported by Unité Mixte de Recherche de Sorbonne Université, de ENS-PSL Research University, du Collége de France et du CNRS No. 8552. P.I., Y.N.N. and K.B. are members of the Allianz Program of the Helmholtz Association, contract number EMMI HA-216 ‘Extremes of Density and Temperature: Cosmic Matter in the Laboratory’. P.I. thanks J.-P. Desclaux for help in improving the MCDFGME code. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement number 832848 - FunI. Furthermore, we acknowledge funding and support by the International Max Planck Research School for Precision Tests of Fundamental Symmetries (IMPRS-PTFS) and by the Max Planck, RIKEN, PTB Center for Time, Constants and Fundamental Symmetries.

Author information

Affiliations

Authors

Contributions

The experiment was performed by R.X.S., M.D., A.R. and S.E. The data were analysed by R.X.S. and S.E. Theoretical calculations were performed by H.B., M.B., H.C., Z.H., M.W.H. and P.I. The manuscript was written by R.X.S., M.B., Z.H., M.W.H., P.I., J.R.C.L.-U. and S.E. and edited by S.U. and K.B. All authors discussed and approved the data as well as the manuscript.

Corresponding authors

Correspondence to R. X. Schüssler or S. Eliseev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jens Dilling, Marianna Safronova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schüssler, R.X., Bekker, H., Braß, M. et al. Detection of metastable electronic states by Penning trap mass spectrometry. Nature 581, 42–46 (2020). https://doi.org/10.1038/s41586-020-2221-0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing