Two-dimensional halide perovskite lateral epitaxial heterostructures

Abstract

Epitaxial heterostructures based on oxide perovskites and III–V, II–VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics1,2,3,4,5,6,7. Halide perovskites—an emerging family of tunable semiconductors with desirable properties—are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers8,9,10,11,12,13,14,15. Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration16,17. Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths18,19,20,21, and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance22,23,24,25,26. Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid π-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: 2D halide perovskite lateral heterostructures stabilized by conjugated ligands.
Fig. 2: TEM characterization of the (2T)2PbI4–(2T)2PbBr4 heterostructure.
Fig. 3: Periodic ripples in (2T)2PbI4–(2T)2PbBr4 lateral heterostructures.
Fig. 4: The library of 2D halide perovskite lateral heterostructures, multiheterostructures and superlattices.
Fig. 5: Proposed band alignments and electrical characteristics of the heterostructures.

Data availability

All data related to this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Lugli, P. & Goodnick, S. M. Nonequilibrium longitudinal-optical phonon effects in GaAs–AlGaAs quantum wells. Phys. Rev. Lett. 59, 716–719 (1987).

  2. 2.

    Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

  3. 3.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  4. 4.

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

  5. 5.

    Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

  6. 6.

    Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

  7. 7.

    Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

  8. 8.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  9. 9.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

  10. 10.

    Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

  11. 11.

    Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

  12. 12.

    Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

  13. 13.

    Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

  14. 14.

    Feng, J. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404–410 (2018).

  15. 15.

    Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

  16. 16.

    Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018).

  17. 17.

    Berry, J. et al. Hybrid organic–inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27, 5102–5112 (2015).

  18. 18.

    Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

  19. 19.

    Hoffman, J. B., Lennart Schleper, A. & Kamat, P. V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3−x through halide exchange. J. Am. Chem. Soc. 138, 8603–8611 (2016).

  20. 20.

    Lai, M. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).

  21. 21.

    Pan, D. et al. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 18, 1807–1813 (2018).

  22. 22.

    Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016).

  23. 23.

    Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

  24. 24.

    Park, B. & Seok, S. I. Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31, 1805337 (2019).

  25. 25.

    Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

  26. 26.

    Huang, Z. et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability. ACS Energy Lett. 4, 1521–1527 (2019).

  27. 27.

    Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

  28. 28.

    Jemli, K. et al. Two-dimensional perovskite activation with an organic luminophore. ACS Appl. Mater. Interfaces 7, 21763–21769 (2015).

  29. 29.

    Connor, B. A., Leppert, L., Smith, M. D., Neaton, J. B. & Karunadasa, H. I. Layered halide double perovskites: dimensional reduction of Cs2AgBiBr6. J. Am. Chem. Soc. 140, 5235–5240 (2018).

  30. 30.

    Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

  31. 31.

    Zhang, Q., Chu, L., Zhou, F., Ji, W. & Eda, G. Excitonic properties of chemically synthesized 2D organic–inorganic hybrid perovskite nanosheets. Adv. Mater. 30, 1704055 (2018).

  32. 32.

    Spanopoulos, I. et al. Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019).

  33. 33.

    Cortecchia, D. et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. J. Am. Chem. Soc. 139, 39–42 (2017).

  34. 34.

    Yang, S. et al. Ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem. Int. Ed. 56, 4252–4255 (2017).

  35. 35.

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

  36. 36.

    Ortiz-Cervantes, C. et al. Thousand-fold conductivity increase in 2D perovskites by polydiacetylene incorporation and doping. Angew. Chem. Int. Ed. 57, 13882–13886 (2018).

  37. 37.

    Liu, C. et al. Tunable semiconductors: control over carrier states and excitations in layered hybrid organic–inorganic perovskites. Phys. Rev. Lett. 121, 146401 (2018).

  38. 38.

    Borg, R. J. & Dienes, G. J. An Introduction to Solid State Diffusion (Academic Press, 1988).

  39. 39.

    Yu, Y. et al. Atomic resolution imaging of halide perovskites. Nano Lett. 16, 7530–7535 (2016).

  40. 40.

    Matthews, J. Defects in epitaxial multilayers I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

  41. 41.

    Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

  42. 42.

    Gao, Y. et al. Highly stable lead-free perovskite field-effect transistors incorporating linear π-conjugated organic ligands. J. Am. Chem. Soc. 141, 15577–15585 (2019).

  43. 43.

    Silver, S., Yin, J., Li, H., Brédas, J. L. & Kahn, A. Characterization of the valence and conduction band levels of n = 1 2D perovskites: a combined experimental and theoretical investigation. Adv. Energy Mater. 8, 1703468 (2018).

  44. 44.

    O’Keefe, M. A. & Kilaas, R. Advances in High-resolution Image Simulation. Report no. LBL-24727 (Lawrence Berkley National Laboratory, 1988); https://escholarship.org/uc/item/6qb303ch.

  45. 45.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

  46. 46.

    Mattoni, A., Filippetti, A., Saba, M. I. & Delugas, P. Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: the role of temperature. J. Phys. Chem. C 119, 17421–17428 (2015).

  47. 47.

    Mattoni, A., Filippetti, A. & Caddeo, C. Modeling hybrid perovskites by molecular dynamics. J. Phys. Condens. Matter 29, 043001 (2017).

  48. 48.

    Hata, T., Giorgi, G., Yamashita, K., Caddeo, C. & Mattoni, A. Development of a classical interatomic potential for MAPbBr3. J. Phys. Chem. C 121, 3724–3733 (2017).

  49. 49.

    Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

  50. 50.

    Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

  51. 51.

    Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

  52. 52.

    Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

  53. 53.

    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general AMBER force field. J. Comput. Chem. 25, 1157–1174 (2004).

  54. 54.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

  55. 55.

    Shirts, M. R. & Chodera, J. D. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129, 124105 (2008).

Download references

Acknowledgements

This work is supported by the Office of Naval Research (grant no. N00014-19-1-2296, programme managers P. Armistead and J. Parker), the National Science Foundation (grant no. 1939986-ECCS, programme manager P. Lane), and at Purdue University, the Davidson School of Chemical Engineering, College of Engineering, and the Birck Nanotechnology Center. TEM work is supported by funding from the National Science Foundation of China (grant no. 21805184), the National Science Foundation Shanghai (grant no. 18ZR1425200) and the Center for High-resolution Electron Microscopy (CħEM) at ShanghaiTech University (grant no. EM02161943). P.Y. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231. J.K acknowledges support from the Air Force Office of Scientific Research (FATE MURI, grant no. FA9550-15-1-0514). B.M.S. acknowledges support from the Air Force Office of Scientific Research (grant no. FA9550-18-S-0003, programme manager K. Caster). We thank L. Huang, B. Boudouris and S. Li for discussions.

Author information

Affiliations

Authors

Contributions

E.S. synthesized and characterized the 2D perovskite materials; B.Y. and Y.Y. performed TEM characterization and data analysis; S.B.S. and B.M.S. performed molecular dynamics simulations and data analysis; Y. Gao performed organic ligand synthesis; A., Y. Guo, C.S., M.L., P.Y. and J.K. participated in materials characterization and data analysis; E.S. and L.D. wrote the manuscript; all authors read and revised the manuscript.

Corresponding authors

Correspondence to Brett M. Savoie or Yi Yu or Letian Dou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Humberto Gutierrez, Hua Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–26, Supplementary Tables 1–4 and Supplementary References.

Supplementary Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, E., Yuan, B., Shiring, S.B. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020). https://doi.org/10.1038/s41586-020-2219-7

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.