Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical manipulation of a topological antiferromagnetic state


Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles1,2,3,4. It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation17,18. However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film19 of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 1010 to 1011 amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals—positive for Pt (ref. 21), close to 0 for Cu and negative for W (ref. 22)—determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals23,24. Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological Weyl AFM Mn3Sn and bilayer device layout.
Fig. 2: SOT-induced magnetic switching in the Mn3Sn devices.
Fig. 3: Reconfigurable antiferromagnetic switching.
Fig. 4: SOT mechanism and electrical switching of noncollinear spin texture.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    ADS  MathSciNet  Google Scholar 

  2. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Google Scholar 

  3. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  CAS  PubMed  Google Scholar 

  4. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  5. Yang, K. Y., Lu, Y. M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    ADS  Google Scholar 

  6. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    ADS  Google Scholar 

  7. Zhong, S., Orenstein, J. & Moore, J. E. Optical gyrotropy from axion electrodynamics in momentum space. Phys. Rev. Lett. 115, 117403 (2015).

    ADS  PubMed  Google Scholar 

  8. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  9. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  CAS  PubMed  Google Scholar 

  10. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS  Google Scholar 

  11. Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    ADS  PubMed  Google Scholar 

  12. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  CAS  PubMed  Google Scholar 

  13. Nandy, S. et al. Chiral anomaly as the origin of the planar Hall Effect in Weyl semimetals. Phys. Rev. Lett. 119, 176804 (2017).

    ADS  CAS  PubMed  Google Scholar 

  14. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    CAS  Google Scholar 

  15. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar, N. et al. Planar Hall effect in the Weyl semimetal GdPtBi. Phys. Rev. B 98, 041103 (2018).

    ADS  CAS  Google Scholar 

  17. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    ADS  CAS  PubMed  Google Scholar 

  18. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  19. Higo, T. et al. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn. Appl. Phys. Lett. 113, 202402 (2018).

    ADS  Google Scholar 

  20. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    ADS  Google Scholar 

  21. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    ADS  PubMed  Google Scholar 

  22. Pai, C. F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    ADS  Google Scholar 

  23. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    ADS  CAS  PubMed  Google Scholar 

  24. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    ADS  CAS  PubMed  Google Scholar 

  25. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    ADS  CAS  Google Scholar 

  26. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013).

    ADS  Google Scholar 

  27. Chien, C. L. & Westgate, C. R. The Hall Effect and its Applications (Plenum, 1980).

  28. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Google Scholar 

  29. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  30. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    ADS  CAS  PubMed  Google Scholar 

  31. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  PubMed  Google Scholar 

  32. Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

    ADS  Google Scholar 

  33. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Z. H. et al. Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7, 515 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

    CAS  Google Scholar 

  36. Ikeda, T. et al. Anomalous Hall effect in polycrystalline Mn3Sn thin films. Appl. Phys. Lett. 113, 222405 (2018).

    Google Scholar 

  37. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    ADS  CAS  PubMed  Google Scholar 

  38. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019); correction 566, E4 (2019).

    ADS  CAS  PubMed  Google Scholar 

  39. Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

    ADS  PubMed  Google Scholar 

  40. Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    ADS  PubMed  Google Scholar 

  41. Suzuki, M. T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    ADS  Google Scholar 

  42. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    ADS  CAS  Google Scholar 

  43. Fukami, S., Zhang, C. DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    ADS  CAS  PubMed  Google Scholar 

  44. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    ADS  CAS  PubMed  Google Scholar 

  45. Bodnar, S. Yu. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  46. Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  47. Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    ADS  CAS  PubMed  Google Scholar 

  48. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    ADS  CAS  Google Scholar 

  49. Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  50. Hajiri, T., Ishino, S., Matsuura, K. & Asano, H. Electrical current switching of the noncollinear antiferromagnet Mn3GaN. Appl. Phys. Lett. 115, 052403 (2019).

    ADS  Google Scholar 

  51. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 51, 2478–2486 (1982).

    ADS  CAS  Google Scholar 

  52. Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater. 31, 1900636 (2019).

    Google Scholar 

  54. Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).

    Google Scholar 

  55. Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

    ADS  Google Scholar 

  56. Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    ADS  CAS  PubMed  Google Scholar 

  57. Burkov, A. A. Giant planar Hall effect in topological metals. Phys. Rev. B 96, 041110 (2017).

    ADS  Google Scholar 

  58. Li, H. et al. Giant anisotropic magnetoresistance and planar Hall effect in the Dirac semimetal Cd3As2. Phys. Rev. B 97, 201110 (2018).

    ADS  CAS  Google Scholar 

  59. Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductivity in a lattice model of Weyl fermions. Phys. Rev. B 93, 035116 (2016).

    ADS  Google Scholar 

  60. Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).

  61. Hu, J. et al. Current jets, disorder, and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 95, 186603 (2005).

    ADS  PubMed  Google Scholar 

  62. dos Reis, R. D. et al. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance. New J. Phys. 18, 085006 (2016).

    Google Scholar 

  63. Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).

    ADS  CAS  Google Scholar 

  64. Nomoto, T. & Arita, R. Cluster multipole dynamics in non-collinear antiferromagnets. Phys. Rev. Res. 2, 012045 (2020).

    CAS  Google Scholar 

  65. Fujita, H. Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets. Phys. Status Solidi Rapid Res. Lett. 11, 1600360 (2017).

    ADS  Google Scholar 

Download references


We thank D. Qu, T. Tomita, Y. Hibino, T. Nozaki and S. Yuasa for discussions, and D. Nishio-Hamane for SEM-EDX measurements. This work is partially supported by CREST (JPMJCR18T3), Japan Science and Technology Agency (JST), through Grants-in-Aid for Scientific Research on Innovative Areas (15H05882 and 15H05883) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, by Grants-in-Aid for Scientific Research (16H06345, 18H03880, 19H00650) and by the New Energy and Industrial Technology Development Organization.

Author information

Authors and Affiliations



S.N. conceived the project. S.N., K.K., S.M. and Y.O. planned the experiments. T.H., S.M., A.K., T. Nakano and K.Y. prepared and characterized the Mn3Sn multilayered films. K.K. fabricated the Hall bar devices. H.T., T.H., K.K. and S.M. performed the electrical switching measurements. T.H. performed the magneto-transport measurements and A.S. performed the thermoelectric measurements. T. Nomoto and R.A. performed numerical calculations and provided a theoretical explanation. T.H., T. Nomoto, S.M. and S.N. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Satoru Nakatsuji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Kyung-Jin Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Longitudinal magnetoconductivity measurements for the Mn3Sn thin film.

a, b, Magnetic field dependence of the magnetoconductivity σ(H) − σ(0) of the 40-nm-thick Mn3Sn film under a magnetic field H parallel (top curves) and perpendicular (bottom curves) to the current I at 300 K (a) and 250 K (b). Here σ(0) is the magnetoconductivity at 0 T. c, d, Angular (Θch) dependence of the magnetoconductivity σ(H) − σ(0) of the 40-nm-thick Mn3Sn film at 300 K (c) and 250 K (d). e, Schematic of the experimental setup used for the magneto-transport measurements. To examine the current homogeneity, we employ three pairs of voltage terminals—(V1, V2) and (V3, V4) on the two sides and (V5, V6) on the centre line of the film—for the measurement shown in a. For the measurements shown in bd, the pair (V1, V2) is used.

Extended Data Fig. 2 Longitudinal MC and planar Hall conductivity measurements for the Mn3Sn thin film.

a, Angular (Φch) dependence of the longitudinal MC Δσ = σ − σ of the 40-nm-thick Mn3Sn film at 250 K. Φch is the in-plane angle between the magnetic field H and the electrical current I. The blue solid line shows the fitting results using equation (2). b, Angular (Φch) dependence of the planar Hall conductivity \({\sigma }_{{\rm{H}}}^{{\rm{PHE}}}\) of the 40-nm-thick Mn3Sn film at 250 K. The pink solid line shows the fitting results using equation (3). c, Schematic of the measurement setup used for the longitudinal MC and PHE with the pairs of terminals (V1, V2) and (VH1, VH2).

Extended Data Fig. 3 Large ANE in the Mn3Sn thin film.

Double-logarithmic plot of the anomalous Nernst coefficient |SANE| versus magnetization M for various FMs, for Mn3Sn single crystals at various temperatures (blue solid circles) and for the polycrystalline Mn3Sn thin film at 300 K (red star). The yellow shaded region highlights the empirical scaling law with M. ML, multilayer; N, number of the stacking. Data from ref. 10, Springer Nature.

Extended Data Fig. 4 Field-induced sign change in transverse thermoelectric conductivity and Hall conductivity of the Mn3Sn thin film.

a, b, Field dependence of the anomalous Nernst coefficient SANE and the Hall resistivity ρH (a) and the transverse thermoelectric conductivity αN and Hall conductivity σH (b) of the the 40-nm-thick Mn3Sn thin film at room temperature. The Seebeck coefficient SSE and the resistivity ρ are also measured at 300 K and found to be constant (SSE = 7.6 μV K−1 and ρ = 290 μΩ cm) in the field sweep measurements below ±4 T. αN is estimated from the electrical conductivity σ = 1, the Hall conductivity σH = −ρH/ρ2, the Seebeck coefficient SSE and the Nernst coefficient SANE using the equation αN = σSANE + σHSSE (Methods). Here, the heat current Q and electrical current I are applied parallel to the film plane and the field is applied along the normal direction (z direction) to the film plane.

Extended Data Fig. 5 Control of the nodal direction connecting a pair of Weyl points using the magnetic octupole polarization.

af, Cluster magnetic octupole (orange arrow) consisting of the six spins on the kagome bilayer in real space (left) and schematic distributions of the Weyl points near the Fermi energy in momentum space (kxky plane at kz = 0; right) for each magnetic structure of Mn3Sn corresponding to φ = π/6 (a), π/2 (b), 5π/6 (c), −π/6 (d), −π/2 (e) and −5π/6 (f). Red and blue spheres represent Weyl nodes that act as sources (+) and drains (−), respectively, of the Berry curvature (green arrows)12.

Extended Data Fig. 6 Experimental conditions for electrical measurements.

a, Sequence used for the SOT-induced switching measurements. b, Thickness dependence of the resistivity of the NM (Pt or W) layer obtained in the Si/SiO2/Ru(2)/Mn3Sn(40)/Pt or W(dNM)/AlOx(5) Hall bar devices at room temperature.

Extended Data Fig. 7 Current-induced switching, signal stability and heating effects in the Mn3Sn devices.

a–c, Hall voltage versus write current density for Mn3Sn without an NM layer (a), Mn3Sn/Cu (b) and Mn3Sn/Pt (c) Hall bar devices under a bias field of Hx = 0.1 T. In contrast to the Mn3Sn/Pt device (c), which shows clear switching, the Hall voltage of the Mn3Sn sample in a is not switched by the electric current, similarly to the Mn3Sn/Cu sample in b. The top and bottom horizontal axes present the write current Iwrite in whole multilayers and the write current density Jwrite in the Mn3Sn layer, respectively. d, Dependence of the Hall voltage VH on the wait time (twait) measured after electrical switching of the AHE by the write current Iwrite (±50 mA, 100 ms) in the Mn3Sn/Pt(7.2) device at room temperature. No variation of the AHE signal is observed for twait = 600 ms ≈ 1 h, which indicates that 600 ms is long enough to cool the sample down to room temperature, and the AHE signal is very stable in the Mn3Sn Hall bar devices after the electrical switching. e, Hall voltage as a function of the number of write current pulses in the Mn3Sn/Pt(7.2) device at room temperature. The AHE signal obtained after the first write current (±50 mA, 100 ms) does not change even after five consecutive pulses, similarly to FMs29.

Extended Data Fig. 8 Crystal grain configurations in the polycrystalline Mn3Sn layer.

ac, Configurations of the SOT-induced switching in the Si/SiO2/Ru(2)/Mn3Sn(40)/Pt and W (dNM)/AlOx(5) Hall bar devices. a, Configuration (b): the kagome layer is parallel to I and perpendicular to p. b, Configuration (c): the kagome layeris parallel to the current I and parallel to the electrically injected carrier spin polarization p. Green arrows represent the spin polarized current in the NM (for example, Pt) induced by the write current along the x direction. The crystal and magnetic structures of Mn3Sn are presented (Fig. 1a, b). c, In-plane angle φ (as defined in Fig. 4c) of the octupole moment as a function of time t for the configuration (b). The coordinates x, y and z are defined as in a. The damping-like torque is applied at t > 21.5 ns. Inset, magnified view of the in-plane angle φ of the octupole moment as a function of time. The results indicate continuous rotation of a slightly canted ITS structure with a frequency of ~3.5 THz.

Extended Data Fig. 9 Kagome plane arrangements for configuration (a).

a, b, Kagome plane orientations (a-1) b axis \([01\bar{1}0]\) parallel to y (a); (a-2) a axis \([2\bar{1}\bar{1}0]\) parallel to ywhere the kagome layer is normal to the current I and parallel to y. The broken arrows represent the magnetic easy axis of the octupole polarization.

Extended Data Fig. 10 Simulated dynamics of the sublattice moments during the switching.

a, In-plane motions of the octupole polarization in the absence of a bias field. The red (blue) line corresponds to the motion under Iwrite > 0 (Iwrite < 0). Here, we use a write current with a finite rise time to suppress the incoherent oscillating behaviour. The inset shows a magnified view of the short period right after the current injection at t1. The parameters used here are the same as those used in Fig. 4b. b, Evolution of the out-of-(kagome)plane components (parallel to the x direction) of the sublattice magnetic moments m1 (red), m2 (blue) and m3 (green), induced by Iwrite < 0. θma > 0 (θma < 0) (a = 1, 2, 3) corresponds to the positive (negative) component in the x direction from the yz (kagome) plane.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, H., Higo, T., Kondou, K. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing