Abstract
Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles1,2,3,4. It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation17,18. However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film19 of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 1010 to 1011 amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals—positive for Pt (ref. 21), close to 0 for Cu and negative for W (ref. 22)—determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals23,24. Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn
Nature Communications Open Access 24 March 2023
-
Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction
Nature Open Access 18 January 2023
-
Non-volatile chirality switching by all-optical magnetization reversal in ferromagnetic Weyl semimetal Co3Sn2S2
Communications Physics Open Access 20 December 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Yang, K. Y., Lu, Y. M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).
Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).
Zhong, S., Orenstein, J. & Moore, J. E. Optical gyrotropy from axion electrodynamics in momentum space. Phys. Rev. Lett. 115, 117403 (2015).
Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).
Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).
Nandy, S. et al. Chiral anomaly as the origin of the planar Hall Effect in Weyl semimetals. Phys. Rev. Lett. 119, 176804 (2017).
Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).
Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).
Kumar, N. et al. Planar Hall effect in the Weyl semimetal GdPtBi. Phys. Rev. B 98, 041103 (2018).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Higo, T. et al. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn. Appl. Phys. Lett. 113, 202402 (2018).
Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).
Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).
Pai, C. F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013).
Chien, C. L. & Westgate, C. R. The Hall Effect and its Applications (Plenum, 1980).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).
Liu, Z. H. et al. Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7, 515 (2017).
Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).
Ikeda, T. et al. Anomalous Hall effect in polycrystalline Mn3Sn thin films. Appl. Phys. Lett. 113, 222405 (2018).
Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019); correction 566, E4 (2019).
Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
Suzuki, M. T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).
Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).
Fukami, S., Zhang, C. DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Bodnar, S. Yu. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).
Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).
Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).
Hajiri, T., Ishino, S., Matsuura, K. & Asano, H. Electrical current switching of the noncollinear antiferromagnet Mn3GaN. Appl. Phys. Lett. 115, 052403 (2019).
Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 51, 2478–2486 (1982).
Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).
Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater. 31, 1900636 (2019).
Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).
Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).
Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).
Burkov, A. A. Giant planar Hall effect in topological metals. Phys. Rev. B 96, 041110 (2017).
Li, H. et al. Giant anisotropic magnetoresistance and planar Hall effect in the Dirac semimetal Cd3As2. Phys. Rev. B 97, 201110 (2018).
Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductivity in a lattice model of Weyl fermions. Phys. Rev. B 93, 035116 (2016).
Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).
Hu, J. et al. Current jets, disorder, and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 95, 186603 (2005).
dos Reis, R. D. et al. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance. New J. Phys. 18, 085006 (2016).
Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).
Nomoto, T. & Arita, R. Cluster multipole dynamics in non-collinear antiferromagnets. Phys. Rev. Res. 2, 012045 (2020).
Fujita, H. Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets. Phys. Status Solidi Rapid Res. Lett. 11, 1600360 (2017).
Acknowledgements
We thank D. Qu, T. Tomita, Y. Hibino, T. Nozaki and S. Yuasa for discussions, and D. Nishio-Hamane for SEM-EDX measurements. This work is partially supported by CREST (JPMJCR18T3), Japan Science and Technology Agency (JST), through Grants-in-Aid for Scientific Research on Innovative Areas (15H05882 and 15H05883) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, by Grants-in-Aid for Scientific Research (16H06345, 18H03880, 19H00650) and by the New Energy and Industrial Technology Development Organization.
Author information
Authors and Affiliations
Contributions
S.N. conceived the project. S.N., K.K., S.M. and Y.O. planned the experiments. T.H., S.M., A.K., T. Nakano and K.Y. prepared and characterized the Mn3Sn multilayered films. K.K. fabricated the Hall bar devices. H.T., T.H., K.K. and S.M. performed the electrical switching measurements. T.H. performed the magneto-transport measurements and A.S. performed the thermoelectric measurements. T. Nomoto and R.A. performed numerical calculations and provided a theoretical explanation. T.H., T. Nomoto, S.M. and S.N. wrote the manuscript. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks Kyung-Jin Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Longitudinal magnetoconductivity measurements for the Mn3Sn thin film.
a, b, Magnetic field dependence of the magnetoconductivity σ(H) − σ(0) of the 40-nm-thick Mn3Sn film under a magnetic field H parallel (top curves) and perpendicular (bottom curves) to the current I at 300 K (a) and 250 K (b). Here σ(0) is the magnetoconductivity at 0 T. c, d, Angular (Θch) dependence of the magnetoconductivity σ(H) − σ(0) of the 40-nm-thick Mn3Sn film at 300 K (c) and 250 K (d). e, Schematic of the experimental setup used for the magneto-transport measurements. To examine the current homogeneity, we employ three pairs of voltage terminals—(V1, V2) and (V3, V4) on the two sides and (V5, V6) on the centre line of the film—for the measurement shown in a. For the measurements shown in b–d, the pair (V1, V2) is used.
Extended Data Fig. 2 Longitudinal MC and planar Hall conductivity measurements for the Mn3Sn thin film.
a, Angular (Φch) dependence of the longitudinal MC Δσ = σ − σ⊥ of the 40-nm-thick Mn3Sn film at 250 K. Φch is the in-plane angle between the magnetic field H and the electrical current I. The blue solid line shows the fitting results using equation (2). b, Angular (Φch) dependence of the planar Hall conductivity \({\sigma }_{{\rm{H}}}^{{\rm{PHE}}}\) of the 40-nm-thick Mn3Sn film at 250 K. The pink solid line shows the fitting results using equation (3). c, Schematic of the measurement setup used for the longitudinal MC and PHE with the pairs of terminals (V1, V2) and (VH1, VH2).
Extended Data Fig. 3 Large ANE in the Mn3Sn thin film.
Double-logarithmic plot of the anomalous Nernst coefficient |SANE| versus magnetization M for various FMs, for Mn3Sn single crystals at various temperatures (blue solid circles) and for the polycrystalline Mn3Sn thin film at 300 K (red star). The yellow shaded region highlights the empirical scaling law with M. ML, multilayer; N, number of the stacking. Data from ref. 10, Springer Nature.
Extended Data Fig. 4 Field-induced sign change in transverse thermoelectric conductivity and Hall conductivity of the Mn3Sn thin film.
a, b, Field dependence of the anomalous Nernst coefficient SANE and the Hall resistivity ρH (a) and the transverse thermoelectric conductivity αN and Hall conductivity σH (b) of the the 40-nm-thick Mn3Sn thin film at room temperature. The Seebeck coefficient SSE and the resistivity ρ are also measured at 300 K and found to be constant (SSE = 7.6 μV K−1 and ρ = 290 μΩ cm) in the field sweep measurements below ±4 T. αN is estimated from the electrical conductivity σ = 1/ρ, the Hall conductivity σH = −ρH/ρ2, the Seebeck coefficient SSE and the Nernst coefficient SANE using the equation αN = σSANE + σHSSE (Methods). Here, the heat current Q and electrical current I are applied parallel to the film plane and the field is applied along the normal direction (z direction) to the film plane.
Extended Data Fig. 5 Control of the nodal direction connecting a pair of Weyl points using the magnetic octupole polarization.
a–f, Cluster magnetic octupole (orange arrow) consisting of the six spins on the kagome bilayer in real space (left) and schematic distributions of the Weyl points near the Fermi energy in momentum space (kx–ky plane at kz = 0; right) for each magnetic structure of Mn3Sn corresponding to φ = π/6 (a), π/2 (b), 5π/6 (c), −π/6 (d), −π/2 (e) and −5π/6 (f). Red and blue spheres represent Weyl nodes that act as sources (+) and drains (−), respectively, of the Berry curvature (green arrows)12.
Extended Data Fig. 6 Experimental conditions for electrical measurements.
a, Sequence used for the SOT-induced switching measurements. b, Thickness dependence of the resistivity of the NM (Pt or W) layer obtained in the Si/SiO2/Ru(2)/Mn3Sn(40)/Pt or W(dNM)/AlOx(5) Hall bar devices at room temperature.
Extended Data Fig. 7 Current-induced switching, signal stability and heating effects in the Mn3Sn devices.
a–c, Hall voltage versus write current density for Mn3Sn without an NM layer (a), Mn3Sn/Cu (b) and Mn3Sn/Pt (c) Hall bar devices under a bias field of Hx = 0.1 T. In contrast to the Mn3Sn/Pt device (c), which shows clear switching, the Hall voltage of the Mn3Sn sample in a is not switched by the electric current, similarly to the Mn3Sn/Cu sample in b. The top and bottom horizontal axes present the write current Iwrite in whole multilayers and the write current density Jwrite in the Mn3Sn layer, respectively. d, Dependence of the Hall voltage VH on the wait time (twait) measured after electrical switching of the AHE by the write current Iwrite (±50 mA, 100 ms) in the Mn3Sn/Pt(7.2) device at room temperature. No variation of the AHE signal is observed for twait = 600 ms ≈ 1 h, which indicates that 600 ms is long enough to cool the sample down to room temperature, and the AHE signal is very stable in the Mn3Sn Hall bar devices after the electrical switching. e, Hall voltage as a function of the number of write current pulses in the Mn3Sn/Pt(7.2) device at room temperature. The AHE signal obtained after the first write current (±50 mA, 100 ms) does not change even after five consecutive pulses, similarly to FMs29.
Extended Data Fig. 8 Crystal grain configurations in the polycrystalline Mn3Sn layer.
a–c, Configurations of the SOT-induced switching in the Si/SiO2/Ru(2)/Mn3Sn(40)/Pt and W (dNM)/AlOx(5) Hall bar devices. a, Configuration (b): the kagome layer is parallel to I and perpendicular to p. b, Configuration (c): the kagome layeris parallel to the current I and parallel to the electrically injected carrier spin polarization p. Green arrows represent the spin polarized current in the NM (for example, Pt) induced by the write current along the x direction. The crystal and magnetic structures of Mn3Sn are presented (Fig. 1a, b). c, In-plane angle φ (as defined in Fig. 4c) of the octupole moment as a function of time t for the configuration (b). The coordinates x, y and z are defined as in a. The damping-like torque is applied at t > 21.5 ns. Inset, magnified view of the in-plane angle φ of the octupole moment as a function of time. The results indicate continuous rotation of a slightly canted ITS structure with a frequency of ~3.5 THz.
Extended Data Fig. 9 Kagome plane arrangements for configuration (a).
a, b, Kagome plane orientations (a-1) b axis \([01\bar{1}0]\) parallel to y (a); (a-2) a axis \([2\bar{1}\bar{1}0]\) parallel to ywhere the kagome layer is normal to the current I and parallel to y. The broken arrows represent the magnetic easy axis of the octupole polarization.
Extended Data Fig. 10 Simulated dynamics of the sublattice moments during the switching.
a, In-plane motions of the octupole polarization in the absence of a bias field. The red (blue) line corresponds to the motion under Iwrite > 0 (Iwrite < 0). Here, we use a write current with a finite rise time to suppress the incoherent oscillating behaviour. The inset shows a magnified view of the short period right after the current injection at t1. The parameters used here are the same as those used in Fig. 4b. b, Evolution of the out-of-(kagome)plane components (parallel to the x direction) of the sublattice magnetic moments m1 (red), m2 (blue) and m3 (green), induced by Iwrite < 0. θma > 0 (θma < 0) (a = 1, 2, 3) corresponds to the positive (negative) component in the x direction from the y–z (kagome) plane.
Rights and permissions
About this article
Cite this article
Tsai, H., Higo, T., Kondou, K. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). https://doi.org/10.1038/s41586-020-2211-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-020-2211-2
This article is cited by
-
Coherent antiferromagnetic spintronics
Nature Materials (2023)
-
Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn
Nature Communications (2023)
-
Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction
Nature (2023)
-
Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials
Nature Physics (2023)
-
Kagome Magnets: The Emerging Materials for Spintronic Memories
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.