The wide-binary origin of (2014) MU69-like Kuiper belt contact binaries

An Author Correction to this article was published on 22 May 2020

This article has been updated

Abstract

Following its flyby and first imaging of the Pluto–Charon binary, the New Horizons spacecraft visited the Kuiper belt object (KBO) 2014 MU69 (also known as (486958) Arrokoth). The imaging showed MU69 to be a contact binary that rotates at a low spin period (15.92 hours), is made of two individual lobes connected by a narrow neck and has a high obliquity (about 98 degrees)1, properties that are similar to those of other KBO contact binaries inferred through photometric observations2. However, all scenarios suggested so far for the origins of such configurations3,4,5 have failed to reproduce these properties and their probable frequent occurrence in the Kuiper belt. Here we show that semi-secular perturbations6,7 operating on only ultrawide KBO binaries close to their stability limit can robustly lead to gentle, slow binary mergers at arbitrarily high obliquities but low rotational velocities, reproducing the characteristics of MU69 and other similar oblique contact binaries. Using N-body simulations, we find that approximately 15 per cent of all ultrawide binaries with a cosine-uniform inclination distribution5,9 are likely to merge through this process. Moreover, we find that such mergers are sufficiently gentle to deform the shape of the KBO only slightly. The semi-secular contact binary formation channel not only explains the observed properties of MU69, but may also apply to other Kuiper belt or asteroid belt binaries and in the Solar System and extra-solar moon systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Roadmap to collisions of MU69.
Fig. 2: Cumulative distributions of the impact characteristics.
Fig. 3: Shape and spin period of MU69.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 22 May 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Stern, S. A. et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper belt object. Science 364, eaaw9771 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  2. 2.

    Lacerda, P. A change in the light curve of Kuiper belt contact binary (139775) 2001 QG298. Astron. J. 142, 90–98 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Goldreich, P., Lithwick, Y. & Sari, R. Formation of Kuiper belt binaries by dynamical friction and three-body encounters. Nature 420, 643–646 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  4. 4.

    Richardson, D. C. & Walsh, K. J. Binary minor planets. Annu. Rev. Earth Planet. Sci. 34, 47–81 (2006).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Perets, H. B. & Naoz, S. Kozai cycles, tidal friction, and the dynamical evolution of binary minor planets. Astrophys. J. Lett. 699, 17–21 (2009).

    ADS  Article  CAS  Google Scholar 

  6. 6.

    Antonini, F. & Perets, H. B. Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica. Astrophys. J. 757, 27–40 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Grishin, E., Perets, H. B. & Fragione, G. Quasi-secular evolution of mildly hierarchical triple systems: analytics and applications for GW sources and hot Jupiters. Mon. Not. R. Astron. Soc. 481, 4907–4923 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Grishin, E., Perets, H. B., Zenati, Y. & Michaely, E. Generalized Hill-stability criteria for hierarchical body systems at arbitrary inclinations. Mon. Not. R. Astron. Soc. 466, 276–285 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Naoz, S., Perets, H. B. & Ragozzine, D. The observed orbital properties of binary minor planets. Astrophys. J. 719, 1775–1783 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).

    ADS  Article  Google Scholar 

  11. 11.

    Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Naoz, S. The eccentric Kozai–Lidov effect and its applications. Annu. Rev. Astron. Astrophys. 54, 441–489 (2016).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Fabrycky, D. & Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Porter, S. B. & Grundy, W. M. KCTF evolution of trans-Neptunian binaries: connecting formation to observation. Icarus 220, 947–957 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Veillet, C. et al. The binary Kuiper-belt object 1998 WW31. Nature 416, 711–713 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  16. 16.

    Petit, J. M. et al. The extreme Kuiper belt binary 2001 QW322. Science 322, 432–434 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  17. 17.

    Luo, L., Katz, B. & Dong, S. Double-averaging can fail to characterize the long-term evolution of Lidov–Kozai cycles and derivation of an analytical correction. Mon. Not. R. Astron. Soc. 458, 3060–3074 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Rein, H. & Spiegel, D. S. IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. Mon. Not. R. Astron. Soc. 446, 1424–1437 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    McKinnon, W. B. et al. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper belt. Science 367, eaay6620 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  21. 21.

    Thirouin, A. & Sheppard, S. S. Light curves and rotational properties of the pristine cold classical Kuiper belt objects. Astron. J. 157, 228–247 (2019).

    ADS  Article  Google Scholar 

  22. 22.

    Parker, A. H. & Kavelaars, J. J. Collisional evolution of ultra-wide trans-Neptunian binaries. Astrophys. J. 744, 139–152 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Perets, H. B. Binary planetesimals and their role in planet formation. Astrophys. J. Lett. 727, 3 (2011).

    ADS  Article  Google Scholar 

  24. 24.

    Funato, Y., Makino, J., Hut, P., Kokubo, E. & Kinoshita, D. The formation of Kuiper belt binaries through exchange reactions. Nature 427, 518–520 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  25. 25.

    Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729–787 (1975).

    ADS  Article  Google Scholar 

  26. 26.

    Grundy, W. et al. Mutual orbit orientations of transneptunian binaries. Icarus 334, 62–78 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Schäfer, C. et al. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects. Astron. Astrophys. 590, A19 (2016).

    Article  Google Scholar 

  28. 28.

    Goldreich, P., Lithwick, Y. & Sari, R. Planet formation by coagulation: a focus on Uranus and Neptune. Annu. Rev. Astron. Astrophys. 42, 549–601 (2004).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B. & Grundy, W. M. Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nat. Astron. 3, 808–812 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Canup, R. M. A giant impact origin of Pluto–Charon. Science 307, 546–550 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  31. 31.

    Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 1999).

  32. 32.

    Liu, B., Muñoz, D. J. & Lai, D. Suppression of extreme orbital evolution in triple systems with short-range forces. Mon. Not. R. Astron. Soc. 447, 747–764 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Grishin, E., Lai, D. & Perets, H. B. Chaotic quadruple secular evolution and the production of misaligned exomoons and warm Jupiters in stellar multiples. Mon. Not. R. Astron. Soc. 474, 3547–3556 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Tremaine, S., Touma, J. & Namouni, F. Satellite dynamics on the Laplace surface. Astron. J. 137, 3706–3717 (2009).

    ADS  Article  Google Scholar 

  35. 35.

    Thirouin, A., Noll, K. S., Ortiz, J. L. & Morales, N. Rotational properties of the binary and non-binary populations in the trans-Neptunian belt. Astron. Astrophys. 569, A3 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Wandel, O. J., Schäfer, C. M. & Maindl, T. I. Collisional fragmentation of porous objects in planetary systems. In Proc. 1st Greek–Austrian Workshop Extrasolar Planetary Systems (eds Maindl, T. I., Varvoglis, H. & Dvorak, R.) 225–242 (2017).

  37. 37.

    Haghighipour, N., Maindl, T. I., Schäfer, C. M. & Wandel, O. J. Triggering the activation of main-belt comets: the effect of porosity. Astrophys. J. 855, 60 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Speith, R. Improvements of the Numerical Method of Smoothed Particle Hydrodynamics. Habilitation thesis, Univ. of Tübingen (2006)

  39. 39.

    Dvorak, R., Maindl, T. I., Burger, C., Schäfer, C. & Speith, R. Planetary systems and the formation of habitable planets. Nonlinear Phenom. Complex Syst. 18, 310–325 (2015).

    Google Scholar 

  40. 40.

    Maindl, T. I. et al. Impact induced surface heating by planetesimals on early Mars. Astron. Astrophys. 574, A22 (2015).

    Article  CAS  Google Scholar 

  41. 41.

    Haghighipour, N., Maindl, T. I., Schäfer, C., Speith, R. & Dvorak, R. Triggering sublimation-driven activity of main belt comets. Astrophys. J. 830, 22 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Schäfer, C. M. et al. Numerical simulations of regolith sampling processes. Planet. Space Sci. 141, 35–44 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Burger, C., Maindl, T. I. & Schäfer, C. M. Transfer, loss and physical processing of water in hit-and-run collisions of planetary embryos. Celestial Mech. Dyn. Astron. 130, 2 (2018).

    ADS  Article  Google Scholar 

  44. 44.

    Malamud, U., Perets, H. B., Schäfer, C. & Burger, C. Moonfalls: collisions between the Earth and its past moons. Mon. Not. R. Astron. Soc. 479, 1711–1721 (2018).

    ADS  CAS  Article  Google Scholar 

  45. 45.

    Malamud, U., Perets, H. B., Schäfer, C. & Burger, C. Collisional formation of massive exomoons of superterrestrial exoplanets. Mon. Not. R. Astron. Soc. 492, 5089–5101 (2020).

    ADS  Article  Google Scholar 

  46. 46.

    Malamud, U. & Perets, H. B. Tidal disruption of planetary bodies by white dwarfs – I: A hybrid SPH-analytical approach. Mon. Not. R. Astron. Soc. 492, 5561–5581 (2020).

    ADS  Article  Google Scholar 

  47. 47.

    Malamud, U. & Perets, H. B. Tidal disruption of planetary bodies by white dwarfs – II: Debris disc structure and ejected interstellar asteroids. Mon. Not. R. Astron. Soc. 493, 698–712 (2020).

    ADS  Article  Google Scholar 

  48. 48.

    Herrmann, W. Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40, 2490–2499 (1969).

    ADS  Article  Google Scholar 

  49. 49.

    Carroll, M. & Holt, A. C. Suggested modification of the Pα model for porous material.J. Appl. Phys. 43, 759–761 (1972).

    ADS  Article  Google Scholar 

  50. 50.

    Jutzi, M., Michel, P., Hiraoka, K., Nakamura, A. M. & Benz, W. Numerical simulations of impacts involving porous bodies. II. Comparison with laboratory experiments. Icarus 201, 802–813 (2009).

    ADS  Article  Google Scholar 

  51. 51.

    Leleu, A., Jutzi, M. & Rubin, M. The peculiar shapes of Saturn’s small inner moons as evidence of mergers of similar-sized moonlets. Nat. Astron. 2, 555–561 (2018).

    ADS  Article  Google Scholar 

  52. 52.

    Jutzi, M., Benz, W., Toliou, A., Morbidelli, A. & Brasser, R. How primordial is the structure of comet 67P? Combined collisional and dynamical models suggest a late formation. Astron. Astrophys. 597, A61 (2017).

    ADS  Article  Google Scholar 

  53. 53.

    Rotundi, A. et al. Dust measurements in the coma of comet 67P/Churyumov–Gerasimenko inbound to the sun. Science 347, aaa3905 (2015).

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Malamud, U. & Prialnik, D. Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies. Icarus 246, 21–36 (2015).

    ADS  CAS  Article  Google Scholar 

  55. 55.

    Lorek, S., Gundlach, B., Lacerda, P. & Blum, J. Comet formation in collapsing pebble clouds. What cometary bulk density implies for the cloud mass and dust-to-ice ratio. Astron. Astrophys. 587, A128 (2016).

    ADS  Article  CAS  Google Scholar 

  56. 56.

    Fulle, M. et al. The dust-to-ices ratio in comets and Kuiper belt objects. Mon. Not. R. Astron. Soc. 469, S45–S49 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Jutzi, M., Benz, W. & Michel, P. Numerical simulations of impacts involving porous bodies. I. Implementing sub-resolution porosity in a 3D SPH hydrocode. Icarus 198, 242–255 (2008).

    ADS  Article  Google Scholar 

  58. 58.

    Grady, E. D. & Kipp, E. Dynamic fracture and fragmentation. In High-Pressure Shock Compression of Solids (eds Asay, J. R. & Shahinpoor, M.) 265–322 (Springer, 1993).

  59. 59.

    Benz, W. & Asphaug, E. Impact simulations with fracture. I – Method and tests. Icarus 107, 98 (1994).

    ADS  Article  Google Scholar 

  60. 60.

    Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).

    ADS  Article  Google Scholar 

  61. 61.

    Jutzi, M. SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015).

    ADS  Article  Google Scholar 

  62. 62.

    Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with D. C. Fabrycky and E. Kite. H.B.P. acknowledges support from the MINERVA Center for Life Under Extreme Planetary Conditions and the Kingsley Fellowship at Caltech. C.M.S. and O.W. acknowledge support by the High Performance and Cloud Computing Group at the Zentrum für Datenverarbeitung of the University of Tübingen, the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant number INST 37/935-1 FUGG. C.M.S. acknowledges support from the DFG through grant number 398488521.

Author information

Affiliations

Authors

Contributions

E.G. led the project, performed the analytic calculations and ran and analysed the N-body simulations. U.M. led the hydrodynamical modelling, its analysis and wrote the hydrodynamical sections. H.B.P. initiated the project and supervised it, suggested the main ideas and concepts and took part in all of the analysis. O.W. ran the hydrodynamical simulations and was the main developer of the porosity module in the hydrodynamical code. C.M.S. developed the hydrodynamical code and supervised the development of the porosity module. E.G. and H.B.P. wrote the main text.

Corresponding author

Correspondence to Evgeni Grishin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional results of the collision models.

a, 40° impact angle, medium-strength material. b, 40° impact angle, low-strength material. c, d, Low-density model (0.5 g cm−3) with an impact angle of 55° and medium-strength material. The edge (c) and face (d) views are given.

Extended Data Fig. 2 Additional results of the collision models.

5° impact angle, high-strength material and large escape velocity, v = 10vesc.

Extended Data Table 1 Merger rate of the binaries in the non-secular regime
Extended Data Table 2 Crush curve, plasticity and fragmentation parameters

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grishin, E., Malamud, U., Perets, H.B. et al. The wide-binary origin of (2014) MU69-like Kuiper belt contact binaries. Nature 580, 463–466 (2020). https://doi.org/10.1038/s41586-020-2194-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing