Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Rebuilding marine life

An Author Correction to this article was published on 16 April 2021

This article has been updated

Abstract

Sustainable Development Goal 14 of the United Nations aims to “conserve and sustainably use the oceans, seas and marine resources for sustainable development”. Achieving this goal will require rebuilding the marine life-support systems that deliver the many benefits that society receives from a healthy ocean. Here we document the recovery of marine populations, habitats and ecosystems following past conservation interventions. Recovery rates across studies suggest that substantial recovery of the abundance, structure and function of marine life could be achieved by 2050, if major pressures—including climate change—are mitigated. Rebuilding marine life represents a doable Grand Challenge for humanity, an ethical obligation and a smart economic objective to achieve a sustainable future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global pressures on marine life.
Fig. 2: Global growth of restoration interventions.
Fig. 3: Recovery trends of marine populations.
Fig. 4: Recovery projections for assessed fish stocks.

Similar content being viewed by others

Change history

References

  1. OECD. The Ocean Economy in 2030 (OECD Publishing, 2016).

  2. Duarte, C. M. et al. Will the oceans help feed humanity? Bioscience 59, 967–976 (2009).

    Article  Google Scholar 

  3. Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).

    Article  Google Scholar 

  5. Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).

    Article  PubMed  Google Scholar 

  7. McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015). This paper reviews the historical hunting and associated loss of animals in the ocean and examines current threats that may result in future losses.

    Article  PubMed  CAS  Google Scholar 

  8. IPBES. IPBES Global Assessment Summary for Policymakers. https://www.ipbes.net/news/ipbes-global-assessment-summary-policymakers-pdf (2019).

  9. Wassmann, P. et al. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).

    Article  ADS  Google Scholar 

  10. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018). This study provides a global assessment of the extent of coral bleaching, with emphasis on the 2015–2016 global coral-reef bleaching events.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (WMO, 2018). This IPCC report suggests that, in light of recent coral losses, the research community may have underestimated the risks of climate change for coral reefs, and concludes that even achieving the ambitious goal of 1.5 °C of global warming under the Paris Agreement could result in the loss of 70–90% of reef-building corals compared to that at the time the assessment was made.

  14. Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lubchenco, J. & Grorud-Colvert, K. Making waves: the science and politics of ocean protection. Science 350, 382–383 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Silver, J. J. et al. Blue economy and competing discourses in international oceans governance. J. Environ. Dev. 24, 135–160 (2015).

    Google Scholar 

  18. Roberts, C. M. The Unnatural History of the Sea (Island Press, 2007). This book reviews how human pressures drove changes in marine ecosystems and to marine life, providing evidence that the observed impacts on marine ecosystems are not a recent phenomenon.

  19. Worm, B. Marine conservation: how to heal an ocean. Nature 543, 630–631 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. Lond. B 285, 20172577 (2018).

    Google Scholar 

  21. FAO. The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals (Food and Agriculture Organization of the United Nations, 2018).

  22. Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  PubMed  CAS  Google Scholar 

  24. IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (accessed 1 April 2019).

  25. Dulvy, N. K., Pinnegar, J. K. & Reynolds, J. D. in Holocene Extinctions (ed. Turvey, S. T.) 129–150 (Oxford Univ. Press, 2009).

  26. Jones, K. R. et al. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 28, 2506–2512 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014). This study reports an estimate of mesopelagic fish abundance, which exceeds the biomass of all other fish stocks by about 30 times and remains unexploited by fisheries.

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Beare, D., Hölker, F., Engelhard, G. H., McKenzie, E. & Reid, D. G. An unintended experiment in fisheries science: a marine area protected by war results in Mexican waves in fish numbers-at-age. Naturwissenschaften 97, 797–808 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richards, Z. T., Beger, M., Pinca, S. & Wallace, C. C. Bikini Atoll coral biodiversity resilience five decades after nuclear testing. Mar. Pollut. Bull. 56, 503–515 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Oguz, T. & Velikova, V. Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Mar. Ecol. Prog. Ser. 405, 231–242 (2010).

    Article  ADS  CAS  Google Scholar 

  31. Mozetič, P. et al. Recent trends towards oligotrophication of the northern Adriatic: evidence from chlorophyll a time series. Estuaries Coast. 33, 362–375 (2010).

    Article  CAS  Google Scholar 

  32. Jackson, J. B. C. Colloquium paper: ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105, 11458–11465 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 63 (2014).

    Article  Google Scholar 

  34. Magera, A. M., Mills Flemming, J. E., Kaschner, K., Christensen, L. B. & Lotze, H. K. Recovery trends in marine mammal populations. PLoS ONE 8, e77908 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011). This paper provides a discussion of the recovery potential and timescales for marine animal populations and ecosystems.

    Article  PubMed  Google Scholar 

  36. Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castilla, J. C. & Defeo, O. Latin American benthic shell fisheries: emphasis on co-management and experimental practices. Rev. Fish Biol. Fish. 11, 1–30 (2001).

    Article  Google Scholar 

  38. Birkenbach, A. M., Kaczan, D. J. & Smith, M. D. Catch shares slow the race to fish. Nature 544, 223–226 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Duarte, C. M. et al. The role of coastal plant communities for climate change mitigation and adaption. Nat. Clim. Change 3, 961–968 (2013). This review summarizes how Blue Carbon strategies, based on the conservation and restoration of vegetated coastal habitats, can help to mitigate climate change and can provide coastal protection, thereby helping coastal communities to adapt to climate change.

    Article  ADS  CAS  Google Scholar 

  41. Reusch, T.B. et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4, eaar8195 (2018). This review provides a narrative of the difficulties and successes in achieving environmental improvements and recovery of the Baltic Sea, with an emphasis on lessons learned to guide future efforts elsewhere.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  42. Boesch, D. F. Barriers and bridges in abating coastal eutrophication. Front. Mar. Sci. 6, 123 (2019).

    Article  Google Scholar 

  43. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Roberts, C. M., Hawkins, J. P. & Gell, F. R. The role of marine reserves in achieving sustainable fisheries. Phil. Trans. R. Soc. B 360, 123–132 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl Acad. Sci. USA 106, 7357–7360 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Roman, J., Dunphy-Daly, M. M., Johnston, D. W. & Read, A. J. Lifting baselines to address the consequences of conservation success. Trends Ecol. Evol. 30, 299–302 (2015).

    Article  PubMed  Google Scholar 

  49. Bejder, M. et al. Embracing conservation success of recovering humpback whale populations: evaluating the case for downlisting their conservation status in Australia. Mar. Policy 66, 137–141 (2016).

    Article  Google Scholar 

  50. Lowry, M. S. et al. Abundance, distribution, and population growth of the northern elephant seal (Mirounga angustirostris) in the United States from 1991 to 2010. Aquat. Mamm. 40, 20–31 (2014). This paper provides a compelling overview of how hunting regulation and protection allowed the remarkable comeback of the northern elephant seal in the Pacific coast of the United States.

    Article  Google Scholar 

  51. Fisheries and Oceans Canada. Stock Assessment of Canadian Grey Seals (Halichoerus grypus). Canadian Science Advisory Secretariat Research Document 2014/010 (Fisheries and Oceans Canada, 2014).

  52. Mazaris, A. D., Schofield, G., Gkazinou, C., Almpanidou, V. & Hays, G. C. Global sea turtle conservation successes. Sci. Adv. 3, e1600730 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Ricard, D. et al. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 13, 380–398 (2012).

    Article  Google Scholar 

  54. Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54, 297–309 (2004).

    Article  Google Scholar 

  55. Rigét, F. et al. Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. Sci. Total Environ. 649, 99–110 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  56. Pinedo-González, A. J. et al. Concentration and isotopic composition of dissolved Pb in surface waters of the modern global ocean. Geochim. Cosmochim. Acta 235, 41–54 (2018).

    Article  ADS  CAS  Google Scholar 

  57. Schøyen, M. et al. Levels and trends of tributyltin (TBT) and imposex in dogwhelk (Nucella lapillus) along the Norwegian coastline from 1991 to 2017. Mar. Environ. Res. 144, 1–8 (2019).

    Article  PubMed  CAS  Google Scholar 

  58. IOTOPF. Oil Tanker Spill Statistics 2016 http://www.itopf.org/ (2016).

  59. Duarte, C. M. et al. Return to Neverland: shifting baselines affect eutrophication restoration targets. Estuaries Coast. 32, 29–36 (2009).

    Article  CAS  Google Scholar 

  60. Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl Acad. Sci. USA 115, 3658–3662 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tomasko, D. et al. Widespread recovery of seagrass coverage in Southwest Florida (USA): temporal and spatial trends and management actions responsible for success. Mar. Pollut. Bull. 135, 1128–1137 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. de los Santos, C.B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019). This study reports how decades of efforts to reduce nutrient inputs, improve coastal water quality and conserve and restore seagrass meadows has led to a remarkable trend reversal from sustained losses of seagrass across Europe throughout the twentieth century to a substantial increase between 2000 and 2010.

    Article  ADS  PubMed  CAS  Google Scholar 

  63. Yoshida, G. et al. in Blue Carbon in Shallow Coastal Ecosystems (eds Kuwae, T. & Hori, M.) (Springer Nature, 2019).

  64. Arnaud-Haond, S. et al. Genetic recolonization of mangrove: genetic diversity still increasing in the Mekong Delta 30 years after Agent Orange. Mar. Ecol. Prog. Ser. 390, 129–135 (2009).

    Article  ADS  Google Scholar 

  65. Nam, V. N., Sasmito, S. D., Murdiyarso, D., Purbopuspito, J. & MacKenzie, R. A. Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetl. Ecol. Manag. 24, 231–244 (2016).

    Article  CAS  Google Scholar 

  66. Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Article  ADS  Google Scholar 

  67. Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    Article  Google Scholar 

  68. López-Angarita, J. et al. Land use patterns and influences of protected areas on mangroves of the eastern tropical Pacific. Biol. Conserv. 227, 82–91 (2018).

    Article  Google Scholar 

  69. Almahasheer, H. et al. Decadal stability of Red Sea mangroves. Estuar. Coast. Shelf Sci. 169, 164–172 (2016).

    Article  ADS  Google Scholar 

  70. Almahasheer, H. Spatial coverage of mangrove communities in the Arabian Gulf. Environ. Monit. Assess. 190, 85 (2018).

    Article  PubMed  Google Scholar 

  71. Chen, L. Z. et al. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2, 45–54 (2009).

    Article  Google Scholar 

  72. Piacenza, S. E. et al. Trends and variability in demographic indicators of a recovering population of green sea turtles Chelonia mydas. Endanger. Species Res. 31, 103–117 (2016).

    Article  Google Scholar 

  73. Thorson, J. T., Cope, J. M., Branch, T. A. & Jensen, O. P. Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information. Can. J. Fish. Aquat. Sci. 69, 1556–1568 (2012).

    Article  Google Scholar 

  74. McClatchie, S. et al. Collapse and recovery of forage fish populations prior to commercial exploitation. Geophys. Res. Lett. 44, 1877–1885 (2017).

    Article  ADS  Google Scholar 

  75. Rosenberg, A. A., Swasey, J. H. & Bowman, M. Rebuilding US fisheries: progress and problems. Front. Ecol. Environ. 4, 303–308 (2006).

    Article  Google Scholar 

  76. Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Safina, C., Rosenberg, A. A., Myers, R. A., Quinn, T. J. II & Collie, J. S. U.S. ocean fish recovery: staying the course. Science 309, 707–708 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Sumaila, U. R. et al. Benefits of rebuilding global marine fisheries outweigh costs. PLoS ONE 7, e40542 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bersoza Hernández, A. et al. Restoring the eastern oyster: how much progress has been made in 53 years? Front. Ecol. Environ. 16, 463–471 (2018).

    Article  Google Scholar 

  81. Graham, M. H. et al. Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Mar. Ecol. Prog. Ser. 148, 269–279 (1997).

    Article  ADS  Google Scholar 

  82. Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445 (1992).

    Article  Google Scholar 

  83. Williams, P. B. & Orr, M. K. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary. Restor. Ecol. 10, 527–542 (2002).

    Article  Google Scholar 

  84. Alongi, D. M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13 (2008).

    Article  ADS  Google Scholar 

  85. Duarte, C. M. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41, 87–112 (1995).

    Article  Google Scholar 

  86. Rooper, C. N. et al. Modeling the impacts of bottom trawling and the subsequent recovery rates of sponges and corals in the Aleutian Islands, Alaska. Cont. Shelf Res. 31, 1827–1834 (2011).

    Article  ADS  Google Scholar 

  87. Girard, F., Shea, K. & Fisher, C. R. Projecting the recovery of a long-lived deep-sea coral species after the Deepwater Horizon oil spill using state-structured models. J. Appl. Ecol. 55, 1812–1822 (2018).

    Article  Google Scholar 

  88. Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thurstan, R. H. & Roberts, C. M. Ecological meltdown in the Firth of Clyde, Scotland: two centuries of change in a coastal marine ecosystem. PLoS ONE 5, e11767 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  91. Britten, G. L. et al. Extended fisheries recovery timelines in a changing environment. Nat. Commun. 8, 15325 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. WWF. Living Blue Planet Report (WWF, 2015).

  94. Thurstan, R. H., Brockington, S. & Roberts, C. M. The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat. Commun. 1, 15 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  95. IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. (eds. Pörtner, H.-O. et al.) (IPCC, 2019). This IPCC Special Report contains an updated assessment of the impacts—both realized and projected—of climate change on the oceans as well as projections on sea-level rise and its associated impacts.

  96. Jepson, P. Recoverable Earth: a twenty-first century environmental narrative. Ambio 48, 123–130 (2019).

    Article  PubMed  Google Scholar 

  97. Molloy, P. P., McLean, I. B. & Côté, I. M. Effects of marine reserve age on fish populations: a global meta-analysis. J. Appl. Ecol. 46, 743–751 (2009).

    Article  Google Scholar 

  98. Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sala, E. et al. Assessing real progress towards effective ocean protection. Mar. Policy 91, 11–13 (2018).

    Article  Google Scholar 

  100. Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).

    Article  PubMed  Google Scholar 

  101. Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. O’Hara, C. C., Villaseñor-Derbez, J. C., Ralph, G. M. & Halpern, B. S. Mapping status and conservation of global at-risk marine biodiversity. Conserv. Lett. 12, e12651 (2019).

    Google Scholar 

  104. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Article  PubMed  Google Scholar 

  105. Barbier, E. B. Policy: Hurricane Katrina’s lessons for the world. Nature 524, 285–287 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. van Katwijk, M. M. et al. Global review of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).

    Article  Google Scholar 

  108. Suggett, D. J. et al. Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restor. Ecol. 27, 683–693 (2019).

    Article  Google Scholar 

  109. Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24, 403–418 (2005).

    Article  Google Scholar 

  110. van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  111. National Academies of Sciences, Engineering, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs https://doi.org/10.17226/25279 (National Academies Press, 2019).

  112. Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135 (2019).

    Article  PubMed  Google Scholar 

  113. Duarte, C. M. & Krause-Jensen, D. Intervention options to accelerate ecosystem recovery from coastal eutrophication. Front. Mar. Sci. 5, 470 (2018).

    Article  Google Scholar 

  114. Xiao, X. et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7, 46613 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  115. Carstensen, J. & Duarte, C. M. Drivers of pH variability in coastal ecosystems. Environ. Sci. Technol. 53, 4020–4029 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Rydin, E., Kumblad, L., Wulff, F. & Larsson, P. Remediation of a eutrophic bay in the Baltic Sea. Environ. Sci. Technol. 51, 4559–4566 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Boesch, D. Deep-water drilling remains a risky business. Nature 484, 289 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Johannsdottir, L. & Cook, D. Systemic risk of maritime-related oil spills viewed from an Arctic and insurance perspective. Ocean Coast. Manage. 179, 104853 (2019).

    Article  Google Scholar 

  119. Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. R. Soc. Lond. B 283, 20160839 (2016).

    Google Scholar 

  120. Worthington, T. & Spalding, M. Mangrove Restoration Potential: A global map highlighting a critical opportunity. https://doi.org/10.17863/CAM.39153 (2018).

  121. Kondolf, G. M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    Article  ADS  Google Scholar 

  122. Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).

    Article  ADS  CAS  Google Scholar 

  126. UNEP. Emissions Gap Report 2019. https://www.unenvironment.org/resources/emissions-gap-report-2019 (UNEP, 2019).

  127. Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).

    Article  ADS  Google Scholar 

  128. Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Barbier, E. B., Burgess, J. C. & Dean, T. J. How to pay for saving biodiversity. Science 360, 486–488 (2018). This study provides estimates and funding mechanisms to pay for biodiversity conservation globally, including estimates of investment and benefits for conserving marine biodiversity.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Balmford, A., Gravestock, P., Hockley, N., McClean, C. J. & Roberts, C. M. The worldwide costs of marine protected areas. Proc. Natl Acad. Sci. USA 101, 9694–9697 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. McCook, L. J. et al. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc. Natl Acad. Sci. USA 107, 18278–18285 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burgess, M. G. et al. Protecting marine mammals, turtles, and birds by rebuilding global fisheries. Science 359, 1255–1258 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  133. Lubchenco, J. et al. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113, 14507–14514 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V. & Ota, Y. A global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE 11, e0166681 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Arlinghaus, R. et al. Opinion: governing the recreational dimension of global fisheries. Proc. Natl Acad. Sci. USA 116, 5209–5213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bäckstrand, K. et al. Non-state actors in global climate governance: from Copenhagen to Paris and beyond. Env. Polit. 26, 561–579 (2017).

    Article  Google Scholar 

  137. Hudson, A. Restoring and protecting the world’s large marine ecosystems: an engine for job creation and sustainable economic development. Environ. Dev. 22, 150–155 (2017).

    Google Scholar 

  138. Gelcich, S., Godoy, N., Prado, L. & Castilla, J. C. Add-on conservation benefits of marine territorial user rights fishery policies in central Chile. Ecol. Appl. 18, 273–281 (2008).

    Article  PubMed  Google Scholar 

  139. Johns, L. N. & Jacquet, J. Doom and gloom versus optimism: an assessment of ocean-related US science journalism (2001–2015). Glob. Environ. Change 50, 142–148 (2018).

    Article  Google Scholar 

  140. Balmford, A. & Knowlton, N. Why Earth optimism? Science 356, 225 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  141. Barbier, E. B. et al. Protect the deep sea. Nature 505, 475–477 (2014).

    Article  PubMed  Google Scholar 

  142. O’Leary, B. C. et al. The first network of marine protected areas (MPAs) in the high seas: the process, the challenges and where next. Mar. Policy 36, 598–605 (2012).

    Article  Google Scholar 

  143. Rodríguez, J. P. et al. Environment: globalization of conservation: a view from the south. Science 317, 755–756 (2007).

    Article  PubMed  Google Scholar 

  144. Mogollón, J. M. et al. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ. Res. Lett. 13, 044008 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by King Abdullah University of Science and Technology through baseline funding to C.M.D. and S.A. G.L.B. was supported by the Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems/CBIOMES (grant number 549931); J.-P.G. was supported by the Prince Albert II of Monaco Foundation, the Ocean Acidification International Coordination Centre of the International Atomic Energy Agency, the Veolia Foundation and the French Facility for Global Environment; H.K.L. and B.W. were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ocean Frontier Institute (Module G); J.C.C. was supported by the Catedra Arauco in Environmental Ethic-UC and Centro Interdisciplinario de Cambio Global-UC. We thank T. Kuwae, R. J. Orth, the Mars Sustainable Solutions (part of Mars Inc), and C. Haight and B. DeAngelis for supplying details on restoration projects; L. Valuzzi, R. Devassy, A. Parry and F. Baalkhuyur for help with the inventory of restoration projects, E. McLeod for help locating materials, and A. Buxton and S. Gasparian for help with displays.

Author information

Authors and Affiliations

Authors

Contributions

C.M.D developed the concept and all authors contributed to the design, data compilation, analysis and writing of the Review.

Corresponding author

Correspondence to Carlos M. Duarte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jonathan S. Lefcheck, Brian MacKenzie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information S1: Examples of successful restoration of coastal habitats. Includes 10 figures. Supplementary Information S2: Data Sources and Analysis. Includes 3 figures and 3 tables, and two supplementary videos (provided as separate files). Supplementary Information S3: Brief narrative on the actions underlying recovery of each of the components targeted by the strategy as reported in Table 1. Supplementary Information S4: The Case for Investment in Rebuilding Marine Biodiversity. Supplementary Information References: References S1-S96.

Video 1

Time evolution of the Marine Protected Areas declared around the world.

Video 2

Time evolution of the restoration projects of coastal habitats deployed around the world.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, C.M., Agusti, S., Barbier, E. et al. Rebuilding marine life. Nature 580, 39–51 (2020). https://doi.org/10.1038/s41586-020-2146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2146-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing