Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collisional cooling of ultracold molecules

Abstract

Since the original work on Bose–Einstein condensation1,2, the use of quantum degenerate gases of atoms has enabled the quantum emulation of important systems in condensed matter and nuclear physics, as well as the study of many-body states that have no analogue in other fields of physics3. Ultracold molecules in the micro- and nanokelvin regimes are expected to bring powerful capabilities to quantum emulation4 and quantum computing5, owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry6. Quantum gases of ultracold atoms can be created using collision-based cooling schemes such as evaporative cooling, but thermalization and collisional cooling have not yet been realized for ultracold molecules. Other techniques, such as the use of supersonic jets and cryogenic buffer gases, have reached temperatures limited to above 10 millikelvin7,8. Here we show cooling of NaLi molecules to micro- and nanokelvin temperatures through collisions with ultracold Na atoms, with both molecules and atoms prepared in their stretched hyperfine spin states. We find a lower bound on the ratio of elastic to inelastic molecule–atom collisions that is greater than 50—large enough to support sustained collisional cooling. By employing two stages of evaporation, we increase the phase-space density of the molecules by a factor of 20, achieving temperatures as low as 220 nanokelvin. The favourable collisional properties of the Na–NaLi system could enable the creation of deeply quantum degenerate dipolar molecules and raises the possibility of using stretched spin states in the cooling of other molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: Thermalization of Na and NaLi.
Fig. 3: Sympathetic heating.
Fig. 4: Evaporation sequences.
Fig. 5: Increasing phase-space density.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  CAS  Google Scholar 

  4. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  CAS  Google Scholar 

  7. Christen, W., Rademann, K. & Even, U. Efficient cooling in supersonic jet expansions of supercritical fluids: CO and CO2. J. Chem. Phys. 125, 174307 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Weinstein, J. D., deCarvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Stellmer, S., Pasquiou, B., Grimm, R. & Schreck, F. Laser cooling to quantum degeneracy. Phys. Rev. Lett. 110, 263003 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Hu, J. et al. Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Soldán, P. & Hutson, J. M. Interaction of NH(X 3Σ) molecules with rubidium atoms: implications for sympathetic cooling and the formation of extremely polar molecules. Phys. Rev. Lett. 92, 163202 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Elioff, M. S., Valentini, J. J. & Chandler, D. W. Subkelvin cooling NO molecules via ‘billiard-like’ collisions with argon. Science 302, 1940–1943 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234–238 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Tokunaga, S. K. et al. Prospects for sympathetic cooling of molecules in electrostatic, a.c. and microwave traps. Eur. Phys. J. D 65, 141–149 (2011)

    Article  ADS  CAS  Google Scholar 

  15. González-Martínez, M. L. & Hutson, J. M. Ultracold hydrogen atoms: a versatile coolant to produce ultracold molecules. Phys. Rev. Lett. 111, 203004 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Lim, J., Frye, M. D., Hutson, J. M. & Tarbutt, M. R. Modeling sympathetic cooling of molecules by ultracold atoms. Phys. Rev. A 92, 053419 (2015).

    Article  ADS  CAS  Google Scholar 

  17. Morita, M., Kosicki, M. B. Z., Żuchowski, P. S. & Tscherbul, T. V. Atom–molecule collisions, spin relaxation, and sympathetic cooling in an ultracold spin-polarized Rb(2S)−SrF(2Σ+) mixture. Phys. Rev. A 98, 042702 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Augustovčová, L. D. & Bohn, J. Ultracold collisions of polyatomic molecules: CaOH. New J. Phys. 21, 103022 (2019).

    Article  ADS  CAS  Google Scholar 

  19. Segev, Y. et al. Collisions between cold molecules in a superconducting magnetic trap. Nature 572, 189–193 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Reens, D., Wu, H., Langen, T. & Ye, J. Controlling spin flips of molecules in an electromagnetic trap. Phys. Rev. A 96, 063420 (2017).

    Article  ADS  Google Scholar 

  21. Stuhl, B. K. et al. Evaporative cooling of the dipolar hydroxyl radical. Nature 492, 396–400 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    Article  ADS  PubMed  Google Scholar 

  25. Truppe, S. et al. Molecules cooled below the doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Article  CAS  Google Scholar 

  26. Collopy, A. L. et al. 3-D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Żuchowski, Z. P. S. & Hutson, J. M. Reactions of ultracold alkali-metal dimers. Phys. Rev. A 81, 060703 (2010).

    Article  ADS  CAS  Google Scholar 

  28. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    Article  ADS  CAS  Google Scholar 

  29. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Trapping laser excitation during collisions limits the lifetime of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Janssen, L. M. C., van der Avoird, A. & Groenenboom, G. C. Quantum reactive scattering of ultracold NH(X 3Σ ) radicals in a magnetic trap. Phys. Rev. Lett. 110, 063201 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Krems, R. V. & Dalgarno, A. Quantum-mechanical theory of atom–molecule and molecular collisions in a magnetic field: spin depolarization. J. Chem. Phys. 120, 2296–2307 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Żuchowski, P. S. & Hutson, J. M. Cold collisions of N(4S) atoms and NH(3Σ) molecules in magnetic fields. Phys. Chem. Chem. Phys. 13, 3669–3680 (2011).

    Article  PubMed  Google Scholar 

  34. Tscherbul, T. V., Kłos, J. & Buchachenko, A. A. Ultracold spin-polarized mixtures of 2Σ molecules with s-state atoms: collisional stability and implications for sympathetic cooling. Phys. Rev. A 84, 040701 (2011).

    Article  ADS  CAS  Google Scholar 

  35. Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    Article  ADS  PubMed  Google Scholar 

  36. Heo, M.-S. et al. Formation of ultracold fermionic NaLi Feshbach molecules. Phys. Rev. A 86, 021602 (2012).

    Article  ADS  CAS  Google Scholar 

  37. Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Hummon, M. T. et al. Cold N + NH collisions in a magnetic trap. Phys. Rev. Lett. 106, 053201 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  39. Campbell, W. C. et al. Mechanism of collisional spin relaxation in 3Σ molecules. Phys. Rev. Lett. 102, 013003 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  40. Warehime, M. & Kłos, J. Nonadiabatic collisions of CaH with Li: importance of spin–orbit-induced spin relaxation in spin-polarized sympathetic cooling of CaH. Phys. Rev. A 92, 032703 (2015).

    Article  ADS  CAS  Google Scholar 

  41. Hadzibabic, Z. et al. Fiftyfold improvement in the number of quantum degenerate fermionic atoms. Phys. Rev. Lett. 91, 160401 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Mosk, A. et al. Mixture of ultracold lithium and cesium atoms in an optical dipole trap. Appl. Phys. B 73, 791–799 (2001).

    Article  ADS  CAS  Google Scholar 

  43. Ivanov, V. V. et al. Sympathetic cooling in an optically trapped mixture of alkali and spin-singlet atoms. Phys. Rev. Lett. 106, 153201 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  44. Lang, F., Winkler, K., Strauss, C., Grimm, R. & Denschlag, J. H. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265 (2010).

    Article  CAS  Google Scholar 

  46. Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  47. Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  48. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  49. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  50. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article  ADS  PubMed  Google Scholar 

  52. Rvachov, T. M. et al. Photoassociation of ultracold NaLi. Phys. Chem. Chem. Phys. 20, 4746–4751 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Rvachov, T. M. et al. Two-photon spectroscopy of the NaLi triplet ground state. Phys. Chem. Chem. Phys. 20, 4739–4745 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Cook, E. C., Martin, P. J., Brown-Heft, T. L., Garman, J. C. & Steck, D. A. High passive-stability diode-laser design for use in atomic-physics experiments. Rev. Sci. Instrum. 83, 043101 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  55. Mukaiyama, T., Abo-Shaeer, J. R., Xu, K., Chin, J. K. & Ketterle, W. Dissociation and decay of ultracold sodium molecules. Phys. Rev. Lett. 92, 180402 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Ravensbergen, C. et al. Production of a degenerate Fermi–Fermi mixture of dysprosium and potassium atoms. Phys. Rev. A 98, 063624 (2018).

    Article  ADS  CAS  Google Scholar 

  57. Derevianko, A., Babb, J. F. & Dalgarno, A. High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers. Phys. Rev. A 63, 052704 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Zwierlein for discussions and J. Yao for technical assistance. We acknowledge support from the NSF through the Center for Ultracold Atoms and award 1506369, from the NASA Fundamental Physics Program and from the Samsung Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

H.S., W.K. and A.O.J. conceived the experiment. H.S. led the data measurement. H.S. and A.O.J. performed the data analysis. H.S., J.J.P. and A.O.J. designed and constructed the experimental setup. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Hyungmok Son.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, H., Park, J.J., Ketterle, W. et al. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020). https://doi.org/10.1038/s41586-020-2141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2141-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing