Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Late-stage oxidative C(sp3)–H methylation


Frequently referred to as the ‘magic methyl effect’, the installation of methyl groups—especially adjacent (α) to heteroatoms—has been shown to dramatically increase the potency of biologically active molecules1,2,3. However, existing methylation methods show limited scope and have not been demonstrated in complex settings1. Here we report a regioselective and chemoselective oxidative C(sp3)–H methylation method that is compatible with late-stage functionalization of drug scaffolds and natural products. This combines a highly site-selective and chemoselective C–H hydroxylation with a mild, functional-group-tolerant methylation. Using a small-molecule manganese catalyst, Mn(CF3PDP), at low loading (at a substrate/catalyst ratio of 200) affords targeted C–H hydroxylation on heterocyclic cores, while preserving electron-neutral and electron-rich aryls. Fluorine- or Lewis-acid-assisted formation of reactive iminium or oxonium intermediates enables the use of a mildly nucleophilic organoaluminium methylating reagent that preserves other electrophilic functionalities on the substrate. We show this late-stage C(sp3)–H methylation on 41 substrates housing 16 different medicinally important cores that include electron-rich aryls, heterocycles, carbonyls and amines. Eighteen pharmacologically relevant molecules with competing sites—including drugs (for example, tedizolid) and natural products—are methylated site-selectively at the most electron rich, least sterically hindered position. We demonstrate the syntheses of two magic methyl substrates—an inverse agonist for the nuclear receptor RORc and an antagonist of the sphingosine-1-phosphate receptor-1—via late-stage methylation from the drug or its advanced precursor. We also show a remote methylation of the B-ring carbocycle of an abiraterone analogue. The ability to methylate such complex molecules at late stages will reduce synthetic effort and thereby expedite broader exploration of the magic methyl effect in pursuit of new small-molecule therapeutics and chemical probes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C(sp3)–H methylation.
Fig. 2: Reaction development.
Fig. 3: Ten different heterocyclic cores, commonly found in pharmaceuticals, explored in the Mn(CF3PDP) (1)-catalysed C–H oxidative methylation.
Fig. 4: Application of oxidative methylation for late-stage functionalization.

Data availability

The data that support the findings of this study are available in the Supplementary Information and from the corresponding author upon reasonable request.


  1. Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).

    Google Scholar 

  2. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016); correction 46, 1760 (2017).

    CAS  PubMed  Google Scholar 

  3. Barreiro, E. J., Kümmerle, A. E. & Fraga, C. A. M. The methylation effect in medicinal chemistry. Chem. Rev. 111, 5215–5246 (2011).

    CAS  PubMed  Google Scholar 

  4. Leung, C. S., Leung, S. S. F., Tirado-Rives, J. & Jorgensen, W. L. Methyl effects on protein-ligand binding. J. Med. Chem. 55, 4489–4500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fauber, B. P. et al. Discovery of 1-{4-[3-fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor c (RORc or RORγ) inverse agonist. J. Med. Chem. 58, 5308–5322 (2015).

    CAS  PubMed  Google Scholar 

  6. Quancard, J. et al. A potent and selective S1P1 antagonist with efficacy in experimental autoimmune encephalomyelitis. Chem. Biol. 19, 1142–1151 (2012).

    CAS  PubMed  Google Scholar 

  7. Belshaw, P. J., Schoepfer, J. G., Liu, K.-Q., Morrison, K. L. & Schreiber, S. L. Rational design of orthogonal receptor-ligand combinations. Angew. Chem. Int. Ed. Engl. 34, 2129–2132 (1995).

    CAS  Google Scholar 

  8. Shogren-Knaak, M. A., Alaimo, P. J. & Shokat, K. M. Recent advances in chemical approaches to the study of biological systems. Annu. Rev. Cell Dev. Biol. 17, 405–433 (2001).

    CAS  PubMed  Google Scholar 

  9. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  10. White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Campos, K. R. Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 36, 1069–1084 (2007).

    CAS  PubMed  Google Scholar 

  12. Cordier, C. J., Lundgren, R. J. & Fu, G. C. Enantioconvergent cross-couplings of racemic alkylmetal reagents with unactivated secondary alkyl electrophiles: catalytic asymmetric Negishi α-alkylations of N-Boc-pyrrolidine. J. Am. Chem. Soc. 135, 10946–10949 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beak, P., Basu, A., Gallagher, D. J., Park, Y. S. & Thayumanavan, S. Regioselective, diastereoselective, and enantioselective lithiation-substitution sequences: reaction pathways and synthetic applications. Acc. Chem. Res. 29, 552–560 (1996).

    CAS  Google Scholar 

  14. Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. Alkyl carbon-carbon bond formation by nickel/photoredox cross-coupling. Angew. Chem. Int. Ed. 58, 6152–6163 (2019).

    CAS  Google Scholar 

  15. Paul, A. & Seidel, D. α-Functionalization of cyclic secondary amines: Lewis acid promoted addition of organometallics to transient imines. J. Am. Chem. Soc. 141, 8778–8782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jain, P., Verma, P., Xia, G. & Yu, J.-Q. Enantioselective amine α-functionalization via palladium-catalysed C–H arylation of thioamides. Nat. Chem. 9, 140–144 (2017).

    CAS  PubMed  Google Scholar 

  17. Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hiemstra, H. & Speckamp, W. N. in Comprehensive Organic Synthesis: Selectivity, Strategy & Efficiency in Modern Organic Chemistry vol. 2 ch.4.5 (eds Trost, B. M. & Fleming, I.) 1047–1082 (Pergamon Press, 1991).

  19. Li, Z., Bohle, D. S. & Li, C.-J. Cu-catalyzed cross-dehydrogenative coupling: a versatile strategy for C–C bond formations via the oxidative activation of sp3 C–H bonds. Proc. Natl Acad. Sci. USA 103, 8928–8933 (2006).

    ADS  CAS  PubMed  Google Scholar 

  20. Andrus, M. B. & Lashley, J. C. Copper catalyzed allylic oxidation with peresters. Tetrahedron 58, 845–866 (2002).

    CAS  Google Scholar 

  21. Kato, N., Hamaguchi, Y., Umezawa, N. & Higuchi, T. Efficient oxidation of ethers with pyridine N-oxide catalyzed by ruthenium porphyrins. J. Porphyr. Phthalocyanines 19, 411–416 (2015).

    CAS  Google Scholar 

  22. Ito, R., Umezawa, N. & Higuchi, T. Unique oxidation reaction of amides with pyridine-N-oxide catalyzed by ruthenium porphyrin: direct oxidative conversion of N-acyl-L-proline to N-acyl-L-glutamate. J. Am. Chem. Soc. 127, 834–835 (2005).

    CAS  PubMed  Google Scholar 

  23. Yoshifuji, S., Tanaka, K.-I., Kawai, T. & Nitta, Y. Chemical conversion of cyclic α-amino acids to α-aminodicarboxylic acids by improved ruthenium tetroxide oxidation. Chem. Pharm. Bull. 33, 5515–5521 (1985).

    CAS  Google Scholar 

  24. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C−H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Annese, C., D’Accolti, L., Fusco, C., Licini, G. & Zonta, C. Heterolytic (2e) vs homolytic (1e) oxidation reactivity: N–H versus C–H switch in the oxidation of lactams by dioxirans. Chem. Eur. J. 23, 259–262 (2017).

    CAS  PubMed  Google Scholar 

  26. Cui, L., Peng, Y. & Zhang, L. A two-step, formal [4+2] approach toward piperidin-4-ones via Au catalysis. J. Am. Chem. Soc. 131, 8394–8395 (2009).

    CAS  PubMed  Google Scholar 

  27. Zhao, J., Nanjo, T., de Lucca, E. C. & White, M. C. Chemoselective methylene oxidation in aromatic molecules. Nat. Chem. 11, 213–221 (2019).

    CAS  PubMed  Google Scholar 

  28. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    ADS  CAS  PubMed  Google Scholar 

  29. Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).

    CAS  PubMed  Google Scholar 

  30. Osberger, T. J., Rogness, D. C., Kohrt, J. T., Stepan, A. F. & White, M. C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 537, 214–219 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Milan, M., Carboni, G., Salamone, M., Costas, M. & Bietti, M. Tuning selectivity in aliphatic C–H bond oxidation of N-alkylamides and phthalimides catalyzed by manganese complexes. ACS Catal. 7, 5903–5911 (2017).

    CAS  Google Scholar 

  32. Nicolaou, K. C., Dolle, R. E., Chucholowski, A. & Randall, J. L. Reactions of glycosyl fluorides. Synthesis of C-glycosides. J. Chem. Soc. Chem. Commun. 1153–1154 (1984).

  33. Posner, G. H. & Haines, S. R. Conversion of glycosyl fluorides into c-glycosides using organoaluminum reagents. Stereospecific alkylation at C-6 of a pyranose sugar. Tetrahedron Lett. 26, 1823–1826 (1985).

    CAS  Google Scholar 

  34. Mason, J. D. & Weinreb, S. M. Total syntheses of the monoterpenoid indole alkaloids (±)-alstoscholarisine B and C. Angew. Chem. Int. Ed. 56, 16674–16676 (2017).

    CAS  Google Scholar 

  35. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    CAS  PubMed  Google Scholar 

  36. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    CAS  PubMed  Google Scholar 

  37. Stevens, R. V. Nucleophilic additions to tetrahydropyridinium salts. Applications to alkaloid syntheses. Acc. Chem. Res. 17, 289–296 (1984).

    CAS  Google Scholar 

  38. Tomooka, K., Matsuzawa, K., Suzuki, K. & Tsuchihashi, G. I. Lactols in stereoselection 2. Stereoselective synthesis of disubstituted cyclic ethers. Tetrahedron Lett. 28, 6339–6342 (1987).

    CAS  Google Scholar 

  39. Lunn, M. R. et al. Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem. Biol. 11, 1489–1493 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Howell, J. M., Feng, K., Clark, J. R., Trzepkowski, L. J. & White, M. C. Remote oxidation of aliphatic C–H bonds in nitrogen-containing molecules. J. Am. Chem. Soc. 137, 14590–14593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Prendergast, M. A. et al. Central nicotinic receptor agonists ABT-418, ABT-089, and (–)-nicotine reduce distractibility in adult monkeys. Psychopharmacology 136, 50–58 (1998).

    CAS  PubMed  Google Scholar 

  42. Maryanoff, B. E. et al. Pyrroloisoquinoline antidepressants. Potent, enantioselective inhibition of tetrabenazine-induced ptosis and neuronal uptake of norepinephrine, dopamine, and serotonin. J. Med. Chem. 27, 943–946 (1984).

    CAS  PubMed  Google Scholar 

  43. Sugi, K. et al. Improved synthesis of paroxetine hydrochloride propan-2-ol solvate through one of metabolites in humans, and characterization of the solvate crystals. Chem. Pharm. Bull. 48, 529–536 (2000).

    CAS  PubMed  Google Scholar 

  44. Fujimoto, J. et al. Discovery of 3,5-diphenyl-4-methyl-1,3-oxazolidin-2-ones as novel, potent, and orally available Δ-5 desaturase (D5D) inhibitors. J. Med. Chem. 60, 8963–8981 (2017).

    CAS  PubMed  Google Scholar 

  45. Kitamura, M., Ohmori, K. & Suzuki, K. Divergent behavior of cobalt-complexed enyne having a leaving group. Tetrahedron Lett. 40, 4563–4566 (1999).

    CAS  Google Scholar 

Download references


Financial support for this work was provided by the National Institute of General Medical Sciences (NIGMS) Maximizing Investigators’ Research Award (MIRA; grant R35 GM122525), and from Pfizer to study the modifications of natural products and medicinal compounds. We thank L. Zhu and the University of Illinois School of Chemical Science (SCS) nuclear magnetic resonance (NMR) laboratory for assistance with NMR spectroscopy, and B. Budaitis for checking the procedure in Fig. 3, molecule 8. The Bruker 500-Mz NMR spectrometer was obtained with the financial support of the Roy J. Carver Charitable Trust, Muscatine, IA, USA.

Author information

Authors and Affiliations



K.F. and R.E.Q. conducted the experiments and analysed the data. M.C.W., K.F. and R.E.Q. wrote the manuscript. M.C.W., K.F., R.E.Q., J.T.K., M.S.O. and U.R. designed the project. All authors provided comments on the experiments and manuscript during its preparation.

Corresponding author

Correspondence to M. Christina White.

Ethics declarations

Competing interests

The University of Illinois has filed a patent application (number 16/569,492) on the Mn(CF3PDP) catalyst that lists M.C.W. as an inventor.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Reaction optimization

Supplementary information

Supplementary Information

This file contains the following sections: I. General information; II. Optimization data; III. Preparation and characterization of newly reported starting materials for Figure 3; IV. Experimental procedures and compound characterization for Figure 3; V. Preparation and characterization of newly reported starting materials for Figure 4; VI. Experimental procedures and compound characterization for Figure 4; VII. HPLC traces for the determination of product stereoretention; VIII. References; and IX. Spectral Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, K., Quevedo, R.E., Kohrt, J.T. et al. Late-stage oxidative C(sp3)–H methylation. Nature 580, 621–627 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing