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            Abstract
The broad applications of ultrawide-band signals and terahertz waves in quantum measurements1,2, imaging and sensing techniques3,4, advanced biological treatments5, and very-high-data-rate communications6 have drawn extensive attention to ultrafast electronics. In such applications, high-speed operation of electronic switches is challenging, especially when high-amplitude output signals are required7. For instance, although field-effect and bipolar junction devices have good controllability and robust performance, their relatively large output capacitance with respect to their ON-state current substantially limits their switching speed8. Here we demonstrate a novel on-chip, all-electronic device based on a nanoscale plasma (nanoplasma) that enables picosecond switching of electric signals with a wide range of power levels. The very high electric field in the small volume of the nanoplasma leads to ultrafast electron transfer, resulting in extremely short time responses. We achieved an ultrafast switching speed, higher than 10 volts per picosecond, which is about two orders of magnitude larger than that of field-effect transistors and more than ten times faster than that of conventional electronic switches. We measured extremely short rise times down to five picoseconds, which were limited by the employed measurement set-up. By integrating these devices with dipole antennas, high-power terahertz signals with a powerâ€“frequency trade-off of 600 milliwatts terahertz squared were emitted, much greater than that achieved by the state of the art in compact solid-state electronics. The ease of integration and the compactness of the nanoplasma switches could enable their implementation in several fields, such as imaging, sensing, communications and biomedical applications.
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                    Fig. 1: Switching speed limitation in solid-state electron devices.[image: ]


Fig. 2: The concept of a nanoplasma switch.[image: ]


Fig. 3: Implementation of nanoplasma switches.[image: ]


Fig. 4: Impulse generation using a nanoplasma switch.[image: ]


Fig. 5: Nanoplasma-based millimetre-wave/terahertz source.[image: ]


Fig. 6: High-repetition-rate pulse sharpening with nanoplasma switches.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Benchmark of state-of-the-art power amplifiers.
a, Power versus frequency trade-off in power amplifiers reveals a decay of output power as frequency increases, resulting in a constant Pfâ€‰2. It should be noted that the limit of 2.5Â mWÂ THz2 in equation (2) has been obtained for a single transistor. With power combination techniques in power amplifiers, relatively higher powers (still below about 10Â mWÂ THz2) can be obtained. In the terahertz band, however, such a power combination becomes very challenging, especially if a high bandwidth is required. As an example of state-of-the-art performance in monolithic microwave integrated circuits (MMICs) and terahertz monolithicly integrated circuits (TMICs), Radisic et al.31 achieved 1.7Â mW at 650Â GHz in a single power amplifier corresponding to Pfâ€‰2Â =Â 0.7Â mWÂ THz2. Another work presented by Leong et al.32 reported 0.93Â mW at 0.85Â THz showing Pfâ€‰2Â =Â 0.67Â mWÂ THz2. RF, radiofrequency. b, Power versus frequency trade-off in different solid-state-based millimetre-wave/terahertz sources showing the generality of the decrease in power at high frequencies. For the references for the data points, please refer to Methods.


Extended Data Fig. 2 De-embedding cabling and probing effects from time-domain measurements.
a, b, Measured reflection and transmission scattering parameters for the used high-frequency coaxial cable (a) and groundâ€“signalâ€“ground (GSG) radiofrequency probe, reported by the manufacturer (b). c, d, FFT of the measured signal (blue) and the obtained FFT after de-embedding (red) for 20-nm-wide-gap (c) and 50-nm-wide-gap (d) devices. e, f, The measured (blue) and de-embedded (red) waveforms for 20-nm-wide-gap (e) and 50-nm-wide-gap (f) devices showing a 5-ps rise time corresponding to the 70-GHz bandwidth of the oscilloscope.


Extended Data Fig. 3 Parasitic capacitance characterization of nanoplasma devices.
a, Schematic of the experimental set-up for capacitance measurement, using a two-port (P1 and P2) VNA. b, Optical image of a device under test in series configuration with two ports of the parametric network analyser. Ground pads are shown with GND. c, Measured (solid lines) and modelled (discrete points) reflection (S11Â =Â S22) and transmission (S21Â =Â S12) coefficients through a 100-nm-gap nanoplasma device. The device was simply modelled as a 25-fF capacitance. d, Extracted capacitance versus frequency for devices with gÂ =Â 70, 200, 1,000 and 5,000Â nm. e, Extracted capacitance versus gap distance. The small parasitic capacitances lead to very high dv/dt limit for nanoplasma devices, for example, 42Â VÂ psâˆ’1 for 500-nm-gap devices. The capacitance can be further decreased by shrinking the device width.


Extended Data Fig. 4 Statistics of the switching performance.
aâ€“c, One-hundred measured switching transients for 1,000-nm-gap devices with 100-nm-thick gold (a), 100-nm-thick tungsten (b) and 500-nm-thick tungsten (c). dâ€“f, Measured switching voltage at tÂ =Â 20Â ps (with standard deviation \({\sigma }_{{\rm{a}}}\)) and measured noise level at tÂ =Â âˆ’20Â ps (with standard deviation \({\sigma }_{{\rm{b}}}\)) corresponding to the waveforms shown in aâ€“c, respectively. The normalized effective standard deviation \({\sigma }_{{\rm{eff}}}=\sqrt{{\sigma }_{{\rm{a}}}^{2}-{\sigma }_{{\rm{b}}}^{2}}/{V}_{{\rm{SW}}}\), where VSWÂ â‰ˆÂ 120Â V is the switching voltage, is 4.9%, 4.6% and 3.2% for the measured waveforms shown in aâ€“c, respectively. gâ€“i, Measured maximum dv/dt corresponding to the measured waveforms shown in aâ€“c, respectively. Characterization of dv/dt is more subject to measurement errors because of the limited sampling time (5Â ps per sample). It should be noted that the limited sampling time generally leads to an underestimation of dv/dt, as the sampling does not necessarily pick the maximum of dv/dt. All the results areÂ presented without de-embedding.


Extended Data Fig. 5 Lifetime evaluation under harsh switching condition.
a, Dissipated power inside a 700-nm-gap nanoplasma switch with tungsten pads under a short circuit test resulting in the highest possible current density for lifetime measurements (high current density is the main driver for electromigration). Measurements showed energy and peak power dissipation of 3Â Î¼J and 0.4Â kW at each short circuit pulse. Such a high power and energy dissipation are orders of magnitude higher than in practical applications. b, Degradation with the definition of (VTH[n] â€“ VTH[0])/VTH[0], where VTH[n] is the threshold voltage at nth short circuit. The error bars showÂ Â±2Ïƒ, where Ïƒ is the standard deviation from ten measurements. The obtained results for the proposed devices with sputtered tungsten pads show their capability of withstanding repetitive short circuits, without any specific optimization. The devices with a thicker pads (thus lower current density) provide a more stable performance even under very harsh conditions, thus one could expect a very long lifetime in normal operations. In addition, electromigration has a solid background in silicon electronics with several demonstrated solutions, including the use of specific alloys, or single crystalline metals that result in nearly infinite lifetime even for submicrometre interconnections123. Thus, even though the 100-nm-thick devices showed a larger degradation in such extreme conditions, they could also be useful in practical applications.


Extended Data Fig. 6 Millimetre-wave/terahertz experimental set-ups and antenna characterization.
a, Experimental set-up for characterizing millimetre-wave and terahertz radiation from the proposed devices integrated with bowtie antennas. A low-speed input pulse charges the bowtie antenna, as a capacitance, until the voltage difference between two terminals reaches the threshold voltage. At this time, the nanoplasma switch turns ON in a very short time and excites the fundamental frequency of the bowtie antenna, as a resonator. The radiated wave is received by another bowtie antenna in front of the transmitter antenna. The receiver antenna is loaded by the 50-Î© port of a UXR1102A Infiniium UXR-Series Keysight oscilloscope with 113-GHz bandwidth. b, Experimental set-up for characterizing the 110-GHz antennas. c, Measured scattering parameters for the antennas. d, Illustration of the obtained results in power/frequency sheet29, as well as the equivalent constant Pfâ€‰2 line. After de-embedding the effect of cables and radiofrequency probe, as well as S21 of the antenna, we obtained average peak power of 50Â W at 109Â GHz. This is considerably higher than typical power levels achieved with other technologies, including impact ionization avalanche transit-time diode (IMPATT), resonant tunnelling diode (RTD) and Gunn diode.


Extended Data Fig. 7 High-repetition-rate performance.
a, Proposed circuit to demonstrate very-high-repetition-rate switching. The FET is ON for t < t0, charging the inductor L. At t = t0, the transistors turns OFF initiating a resonance between its output capacitance and inductor L. b, Without connecting the DUT, a high-amplitude spike is generated. By connecting the DUT, when the voltage reaches the VTH of the switch, the DUT discharges the output capacitance. At this time, the inductor still has current, so it charges again the output capacitance. This charging/discharging process can continue up to several times, depending on the inductor current. c, Measured voltage waveform over DUT (gÂ =Â 6Â Î¼m) showing a small plasma recombination time <20Â ns to reconfigure the transistor back to its operation. This shows a high-switching frequency in the devices. The measured less than 20-ns recombination time enables the achievement of a switching frequency up to 50Â MHz (depends on the duty cycle) at 390Â V (hollow red marker). In the current circuit, however, the switching frequency was limited to 20Â MHz (solid red star). d, Benchmarking the obtained switching frequency with the state of the art in solid-state electronics. These results show the potential of the proposed devices, not only in ultrafast dv/dt transients, but also in switching frequencies. For the references for the data points, please refer to Methods.


Extended Data Fig. 8 Application in over-voltage protection of devices and systems.
Radiofrequency ports of high-frequency systems need to have a unit to protect the system from over-voltage caused by electromagnetic interference (EMI), high-power radiofrequency radiation and so on25. The protection unit needs to be easily integrable, provide a fast action, a high-current capability, as well as a low parasitic capacitance. The proposed devices are well matched to this application, as they can discharge the over-voltage and retain their off state in a short time. They can also be used to protect any electron device from over voltage causing hard breakdown and device failure. The voltage protection limit can be easily adjusted by the gap size. a, Breakdown test on a 60-V-rated GaN-on-Si High-electron-mobility transistor (HEMT) (device A) resulting in a hard breakdown voltage (VBR) of 140Â V. b, Breakdown test on a 200-V-rated GaN HEMT (device B) resulting in VBRÂ =Â 470Â V. c, Breakdown test on a 650-V-rated GaN HEMT (device C) resulting in VBRÂ =Â 1,340Â V. As there are no avalanche characteristics in GaN HEMTs26, the manufacturers have to over design the devices to ensure a safe operation. This leads to a much higher ON resistance, which considerably increases the amount of losses in power converters. By integrating the proposed devices inside the package, it is possible to protect the device from over-voltages to eliminate the over design, which eventually leads to lower ON resistance. d, Proposed circuit to demonstrate the protection application for a FET from a hard breakdown. The FET is in the OFF state holding voltage VDD, and an over-voltage vtr is applied. When the voltage over device is lower than the protection limit (VTH), the plasma device is OFF, resulting in ultralow parasitics (Extended Data Fig. 3). As a result, the protection branch current (iP) is completely negligible with respect to the FET current (iFET); therefore, the protection branch does not affect the normal operation of the device. However, when the drain-source voltage becomes larger than VTH, the plasma device discharges the extra energy, protecting the device from hard breakdown. The series resistance RSÂ =Â 1Â kÎ© is used for smoothing the discharge process. The load resistance (RL) was considered to be 1Â kÎ©. To demonstrate the functionality of this method, we used GaN HEMT B biased at VDDÂ =Â 220Â V and a plasma device with VTHÂ =Â 380Â V. e, Output voltage without protection branch, showing a hard breakdown at 460Â V. f, Output voltage with protection branch. The plasma device discharges the over-voltage, limiting the output voltage to 385Â V. The protection limit (VTH) can be easily adjusted by tuning the gap distance.
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