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            Abstract
Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia1,2. High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning3,4,5. However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4Â s) was detected by D2Rs to disinhibit adenosine A2A receptor (A2AR)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A2ARs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.
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                    Fig. 1: DA dips during discrimination learning and extinction after reward conditioning.[image: ]


Fig. 2: Optogenetic manipulation of DA dips during discrimination learning and extinction.[image: ]


Fig. 3: Sensitive detection of DA dip for spine plasticity of D2-SPNs.[image: ]


Fig. 4: Roles of plasticity-related signals in D2-SPNs in discrimination learning and extinction.[image: ]


Fig. 5: Effects of MAP on discrimination learning and spine enlargement in D2-SPNs.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Discrimination learning.
a, Schematic of a behavioural setup for the toneâ€“reward discrimination task in classical conditioning in head-restrained mice. A tube monitored licking responses. b, Numbers of trials during the discrimination task. For sessions with multiple task types, the order of presentation was pseudo-randomized. c, The time course of lick scores. nÂ =Â 7 mice. d, Peristimulus time histograms (PSTHs) of licking responses plotted against time from CS onset on days 1, 2, 3, and 4. The grey bar indicates the period of tone presentation. nÂ =Â 7 mice. e, Lick scores for CS+ and CSâˆ’ on day 4. Two-sided Wilcoxon signed-rank test (nÂ =Â 7 mice, WÂ =Â 0, *PÂ =Â 0.016). f, Schematic of fibre photometry of DA activities in the lateral NAc. g, Averaged z-scores of green fluorescence during discrimination on days 1, 2, and 3. Orange bars indicate integration periods. nÂ =Â 7 mice. h, Plots of photometry signals in US timing (1.5â€“3 s after CS onset). Two-sided Wilcoxon signed-rank test with Bonferroni correction (nÂ =Â 7 mice, day 1, WÂ =Â 0, *PÂ =Â 0.016; day 2, WÂ =Â 0, *PÂ =Â 0.016; day 3, WÂ =Â 0, *PÂ =Â 0.016). Error bars and shading indicate s.e.m. Vertical grey shading in d, g indicates CS periods. Samples of mice are biological replicates.

                          Source data
                        


Extended Data Fig. 2 Generalization of cues after reward conditioning and SCH23390 effects.
a, Schematic of toneâ€“reward classical conditioning task in classical conditioning in head-restrained mice. A tube monitored licking responses. b, Raster plots of licking responses before (left), during (middle) and after (right) conditioning in a representative mouse. Grey shading indicates the periods of CS presentation. câ€“f, Generalization to pure tones (c, d), and light (e, f). PSTHs in c, e show licking responses before (left), during (middle) and after (right) conditioning. Lick scores are plotted against time (d, f). nÂ =Â 11 (c, d) and 7 mice (e, f). g, Schematic of drug infusion into the bilateral NAc. h, i, Effect of drug infusion on generalized conditioned responses. Top, plots of lick scores; bottom, PSTHs at generalization tests. Grey shading indicates periods of CS presentation. Black and red bars indicate infusion periods. nÂ =Â 6 (h) and 6 mice (i). Error bars and shading indicate s.e.m. Vertical grey shading in c, e, h, i indicates CS periods. Samples of mice are biological replicates.

                          Source data
                        


Extended Data Fig. 3 Photometry of DA terminal activity from sub-regions of the NAc during discrimination learning.
a, Schematic of four-site (anterior or posterior/medial or lateral) photometry. b, Representative confocal images showing locations of four fibres in the NAc. Signals were stably obtained from the medial NAc for anterior position (left) and the lateral NAc core for posterior position (right). The locations of the tips of fibres were plotted on the reference atlas. Grey areas indicate the NAc core. c, Schematics of behavioural tasks. CSâˆ’ trials during discrimination consisted of 40 trials at 10Â kHz and 40 trials at 16Â kHz. d, e, Representative raster plots (d) and averaged PSTHs (e) of lick responses during generalization, discrimination and extinction. nÂ =Â 9 mice, as in Fig. 1hâ€“p. f, g, Averaged photometry signals obtained from the lateral (f) and medial NAc (g). nÂ =Â 9 mice. h, Plots of photometry signals in the lateral NAc in CS timing (0â€“1 s after CS onset). Two-sided Wilcoxon signed-rank test (nÂ =Â 9 mice, generalization tests, WÂ =Â 3, *PÂ =Â 0.020; discrimination test, WÂ =Â 0, **PÂ =Â 0.004). i, Plots of photometry signals in US timing (1.5â€“3 s after CS onset). Green boxes indicate the periods of sampling indicated in f. Two-sided Wilcoxon signed-rank test (vs baseline) with Bonferroni correction for multiple comparisons (nÂ =Â 9 mice, day 2 discrimination, WÂ =Â 0, **PÂ =Â 0.004; day 3 discrimination, WÂ =Â 1, **PÂ =Â 0.008; day 4 extinction early, WÂ =Â 0, **PÂ =Â 0.004; day 4 extinction late, WÂ =Â 15, PÂ =Â 0.43; day 5 extinction early, WÂ =Â 17, PÂ =Â 0.57; day 5 extinction late, WÂ =Â 25, PÂ =Â 0.82). Error bars and shading indicate s.e.m. Vertical grey shading in eâ€“g indicates CS periods. Samples of mice are biological replicates.

                          Source data
                        


Extended Data Fig. 4 Generalization and discrimination learning for various combinations of tones for CS+ and CSâˆ’.
a, b, Schematics for assignment of tones to CS+ with US and CSâˆ’ trials in variations of generalizationâ€“discrimination learning tasks. c, d, Lick scores plotted against time. Trial numbers for each trial type are indicated above the plots. In CSâˆ’ trials in c, equal numbers of trials were pseudo-randomly allocated to presentation of 10-kHz or 16-kHz tone. For example, there were 40 trials at 6Â kHz and 40 trials at 10Â kHz during discrimination. In CS+ trials in d, only 6-kHz tones were presented during conditioning and the discrimination test and 36 pseudo-randomly mixed trials of 6Â kHz and 10Â kHz were presented during discrimination. nÂ =Â 6 mice per group. e, f, Averaged lick traces at generalization tests (left) or discrimination tests (right). nÂ =Â 6 mice per group. g, h, Generalization indices at generalization tests and discrimination tests. Two-sided Wilcoxon signed-rank test (g, nÂ =Â 6 mice, WÂ =Â 0, *PÂ =Â 0.03; h, nÂ =Â 6 mice, WÂ =Â 0, *PÂ =Â 0.03). Error bars and shading indicate s.e.m. Vertical grey shading in e, f indicate CS periods. Samples of mice are biological replicates.

                          Source data
                        


Extended Data Fig. 5 Optogenetic manipulation of DA neurons in the VTA.
a, Schematic of experimental setup. b, Representative confocal images of virus expression and fibre position. The locations of fibre tips were plotted on the reference atlas. TH, tyrosine hydroxylase immunostaining. White bars indicate traces of optical fibres. Grey areas in the atlas indicate the NAc core. c, Photometry of DA neurons stimulated with red LED. Top, schema for stimulus presentation; middle, photometry responses at NAc; bottom, plots of peak photometry responses. Friedmanâ€™s test for mCherry (nÂ =Â 8 mice, Ï‡2(3)Â =Â 15.8, PÂ =Â 0.001; post hoc two-sided Wilcoxon signed rank test with Bonferroni correction, no stimulation versus 5Â Hz, WÂ =Â 10, PÂ =Â 0.26; no stimulation versus 20Â Hz, WÂ =Â 17, PÂ =Â 0.89; no stimulation versus sucrose, WÂ =Â 0, **PÂ =Â 0.008) and for CsChrimsonR (nÂ =Â 7 mice, Ï‡2(3)Â =Â 18.9, PÂ =Â 0.0003; post hoc two-sided Wilcoxon signed rank test with Bonferroni correction, no stimulation versus 5Â Hz, WÂ =Â 0, PÂ =Â 0.093; no stimulation versus 20Â Hz, WÂ =Â 0, *PÂ =Â 0.016; no stimulation versus sucrose, WÂ =Â 0, *PÂ =Â 0.016). d, Schematic of reinforcement of licking behaviour by optogenetic self-stimulation of DA neurons. Licking behaviour triggered optogenetic self-stimulation of DA neurons in the VTA without water delivery. e, Cumulative lick number against time (top) and plots across the conditions (bottom). Friedmanâ€™s test for mCherry (nÂ =Â 8 mice, Ï‡2(2)Â =Â 1, PÂ =Â 0.60) and for CsChrimson (nÂ =Â 7 mice, Ï‡2(2)Â =Â 11.1, PÂ =Â 0.004; post hoc two-sided Wilcoxon signed rank test with Bonferroni correction, no stimulation versus 5Â Hz, WÂ =Â 8, PÂ =Â 0.31; no stimulation versus 20Â Hz in CsChrimsonR, WÂ =Â 0, *PÂ =Â 0.016). f, Schematic of experimental setup for optogenetic enhancement of DA dips during discrimination. AAVs were injected to express eNpHR3.0 and GCaMP6f in VTA-DA neurons. Optical fibres were implanted at the VTA for stimulation of eNpHR3.0 and at the right NAc for photometry of GCaMP. g, Locations of the fibre tips plotted on the reference atlas. h, Averaged z-scores of photometry responses during CSâˆ’ trials in the discrimination period for eNpHR3.0 (red) and mCherry (blue). i, Lick scores plotted against time. Red bar indicates the period of optogenetic stimulation. nÂ =Â 6 (h, i, mCherry) and 5 (h, i, eNpHR3.0) mice. Light green bar indicates sampling periods for the fibre photometry data shown in h. j, Locations of the tips of fibres plotted on the reference atlas. k, Averaged z-scores of photometry responses with 20-Hz optogenetic stimulation during extinction. l, Lick scores plotted against time with 20-Hz DA stimulation during extinction. Red bar indicates the period of optogenetic stimulation. Green bar indicates sampling periods for the fibre photometry data shown in k. m, Averaged lick traces during CT and extinction test (top) and lick score at CT and extinction test (bottom). nÂ =Â 5 mice (kâ€“m). n, Plots of extinction indices across conditions. nÂ =Â 6 mice for mCherry 5Â Hz, nÂ =Â 4 mice for CsChrimsonR 5Â Hz, nÂ =Â 4 mice for CsChrimsonR 20Â Hz. Kruskalâ€“Wallis test (Ï‡2(2)Â =Â 9.5, PÂ =Â 0.009; post hoc Steelâ€™s test, CsChrimsonR 5Â Hz versus mCherry, tÂ =Â 1.28, PÂ =Â 0.34; CsChrimsonR 20Â Hz versus mCherry, tÂ =Â âˆ’2.6, *PÂ =Â 0.02). Data for CsChrimsionR 5Â Hz and mCherry 5Â Hz are from Fig. 2m. Scale bars in b indicate 500Â Î¼m. Scale bars in h, k indicate 1Â s and 1 z-score. Scale bars in m indicate 1Â s and 2Â Hz. Error bars and shading indicate s.e.m. Vertical grey shading in h, k indicates CS periods. Samples of mice are biological replicates.
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Extended Data Fig. 6 Pharmacological properties of spine plasticity in D2-SPNs.
a, Example trace of 2pEPSC (average of five traces with stimulation of four spines from one slice). b, Membrane potential during one train of stimulation (top) and command of uncaging (red) and current injection (black) (bottom). To mimic the up state, constant current (~200Â pA) was injected for 1.1Â s and APs were evoked by pulsed current injections (0.6â€“2.0Â nA, 2Â ms). c, Magnified traces of membrane potentials. Note the 2pEPSP, right. d, Schematic of virus injection to label D2-SPNs e, Schematic of stimulation and representative images of dendritic spines in mCherry-expressing D2-SPNs. Red circles show two-photon uncaging spots. f, g, Time course of volume changes of stimulated and neighbouring spines in the absence of CGS (f) and in the absence of CGS with sulpiride (g). STDP stimulation was applied at 0 min. nÂ =Â 5 (f) and 6 slices (g). h, Viral expression of AIP in D2-SPNs. i, Schematics of STDP stimulation of AIP-expressing D2-SPNs in the presence of CGS (top) and representative images of dendritic spines (bottom). j, Time courses of volume changes of stimulated and neighbouring spines in AIP-expressing D2-SPNs. A reference trace of mCherry is the same as in Fig. 3d. nÂ =Â 6 slices. kâ€“m, Electrophysiological properties of D2-SPNs expressing AIP. nÂ =Â 10 and 6 slices for mCherry and AIP. Plots of resting membrane potential (RMP) (k), two-sided Mannâ€“Whitney U test (UÂ =Â 22, PÂ =Â 0.39); 2pEPSC (l, right), two-sided Mannâ€“Whitney U test (UÂ =Â 23, PÂ =Â 0.45); averaged traces of 2pEPSC (l, left); and membrane potentials during STDP stimulation (m) are shown. nâ€“q, Spine plasticity of D2-SPNs in the presence of CGS with PKI (o, p, nÂ =Â 6 slices) or AP5 (q, nÂ =Â 6 slices). r, A schematic of virus injection to label D1-SPNs using Cre-off mCherry-expressing AAV (FAS-NLS-mCherry)44. s, Representative images of dendritic spines stimulated in the presence of CGS21680 (top) or puff-applied DA (bottom) in D1-SPNs. t, Time course of volume changes. nÂ =Â 6 for CGS and 5 slices for DA (puff). u, Plots of volume changes. nÂ =Â 6 for CGS, nÂ =Â 5 slices for DA (puff). Two-sided Mannâ€“Whitney U test (UÂ =Â 0, **PÂ =Â 0.006). Scale bars in e, i, o, s indicate 2Â Î¼m. Error bars indicate s.e.m. Samples of slices are biological replicates.
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Extended Data Fig. 7 DA concentration profiles for various optogenetic stimulation protocols of DA fibres.
a, Schematic of virus injection (left) and amperometric detection of ChR2-driven DA release (right). A carbon fibre electrode was placed in the lateral NAc. b, c, Confocal images showing the expression of ChR2-mCherry in DA neurons in the VTA (b) and NAc (c). Scale bars indicate 500Â Î¼m for top parts and 5Â Î¼m for bottom parts of b, c. d, e, Replication of tonic DA levels in the NAc slice. Blue light pulses (2Â ms) were applied at 5Â Hz for 160Â s with constant intensity (d, bottom) or modulated intensity (e, bottom). Amperometry signals for the evoked DA are shown (d, e, top). At the onset of stimulation, a strong but transient DA release which reflected long-term absence of autoinhibition was observed, whose peaks are omitted in the display. Insets show comparisons of averaged DA concentration between the first 10Â s (1â€“11Â s) and the last 10Â s (150â€“160Â s). Two-sided Wilcoxon signed-rank test for constant (nÂ =Â 8 slices, WÂ =Â 0, *PÂ =Â 0.017) and for modulation (nÂ =Â 9 slices, WÂ =Â 14, PÂ =Â 0.31). f, Time course averaged every 10 s over the stimulation period of 160 s. g, Plots of averaged tonic DA concentration. Each dot represents the averaged DA concentration indicated in the grey bar in f for each slice. h, Trace of DA concentration (top) and DA stimulation commands (bottom). During 5-Hz blue light stimulation, a 2-s pause was inserted 15 times in every 10 s. i, Averaged trace of the DA dip over 15 dips. To allow quick recovery to tonic levels, 5 pulses at 10 Hz were added after the pause. j, Plots of DA levels with various DA dips. Baselines indicate the average of 1 s before the dip onset and troughs indicate the average during the last 0.1Â s of each dip. nÂ =Â 14 (dip 2Â s), 8 (dip 0.6Â s) and 12 slices (dipÂ 0.4 s). k, Plots of DA changes by various DA dips. Baseline values were subtracted from trough values. Two-sided Wilcoxon signed-rank test (dip 2Â s, nÂ =Â 14 slices, WÂ =Â 0, **PÂ =Â 4.0Â Ã—Â 10âˆ’4; dip 0.6Â s, nÂ =Â 8 slices, WÂ =Â 0, **PÂ =Â 0.003; dip 0.4Â s, nÂ =Â 12 slices, WÂ =Â 0, **PÂ =Â 7.0Â Ã—Â 10âˆ’4). l, Trace of DA concentration (top) and DA stimulation commands (bottom). During 5-Hz blue light stimulation, 20-Hz stimulation (dark blue) with an enhanced stimulation intensity was inserted 15 times every 10 s. m, Averaged trace of DA concentration over 15 bursts. n, Plots of DA levels by various DA bursts. Baselines indicate the average of 1 s before the burst onset and troughs indicate the average during the last 0.1 s of each burst. nÂ =Â 11 (burst 1Â s) and 7 slices (burst 0.5Â s). o, Plots of DA changes by various DA bursts. Baseline values were subtracted from peak values. Two-sided Wilcoxon signed-rank test (burst 1Â s, nÂ =Â 11 slices, WÂ =Â 0, **PÂ =Â 0.003; burst 0.5 s, nÂ =Â 7 slices, WÂ =Â 0, **PÂ =Â 0.003). Error bars and shading indicate s.e.m. Samples of slices are biological replicates.
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Extended Data Fig. 8 Optogenetics of DA fibres and spine plasticity in slices.
aâ€“c, Schematics of virus injections and confocal images of mCherry expression in the NAc for histological verification of virus expression in the NAc in A2A-Cre/DAT-Cre double transgenic mice. a, mCherry was expressed in soma and neuropil (a, nÂ =Â 3 mice) under the conditions used in slice experiments. b, A condition for the test of DAT-Cre-derived non-target expression in the NAc shows no DIO-mCherry expression in the NAc of DAT-Cre mice (nÂ =Â 3 mice). c, A condition for the test of anterograde or retrograde infection to D2-SPNs in the NAc. Although AAV5s are known to retrogradely infect51, DIO-mCherry was not expressed in the NAc of A2A-Cre mice when injected in the VTA (nÂ =Â 3 mice), consistent with no direct input from D2-SPN to the VTA. These data also demonstrate no anterograde transfection from the VTA DA neurons to the NAc. d, Confocal images of ChR2-mCherry expression and chart of the proportion of TH+ cells among ChR2-mCherry positive cells in the VTA DA neurons from A2A-Cre/DAT-Cre double transgenic mice. Data from four mice were aggregated. e, Individual spine volume changes in D2-SPNs in response to tonic DA or various durations of DA dips (left) and D1-SPNs in response to tonic DA or various durations of DA bursts (right). nÂ =Â 13 (CGS), 6 (dip 2Â s), 5 (dip 0.6Â s), 7 (dip 0.4Â s) and 7 slices (tonic) for D2-SPNs. nÂ =Â 5 (tonic), 5 (burst 0.5Â s) and 7 slices (burst 1Â s) for D1-SPNs. Spearman correlation coefficients (shown) were tested by two-sided Studentâ€™s t-test. PÂ =Â 7.1Â Ã—Â 10âˆ’12 (left) and PÂ =Â 6.3Â Ã—Â 10âˆ’5 (right). f, Testing the effects of DA burst stimulation on spine plasticity in D2-SPNs. Red circle shows the two-photon uncaging spot. Scale bar, 2Â Î¼m. g, Time course of volume changes and plots of spine volume changes. For reference, a plot with 5-Hz tonic stimulation from Fig. 3h is shown. nÂ =Â 7 slices for tonic, nÂ =Â 5 slices for burst 1Â s. Two-sided Mannâ€“Whitney U test (UÂ =Â 12, PÂ =Â 0.37). h, i, Stimulation protocols for measuring 2pEPSCs before and after STDP stimulation with (h) and without (i) a DA dip. j, k, Time courses of the 2pEPSC amplitudes of stimulated and neighbouring spines with (j) and without (k) DA dip. Insets show 2pEPSC for stimulated and neighbouring spines before (black) and after the stimulation (red). nÂ =Â 11 spines from 5 slices (j) and 14 spines from 6 slices (k). l, Average changes in 2pEPSCs. nÂ =Â 11 spines from 5 slices (dip 2Â s) and 14 spines from 6 slices (tonic). Two-sided Mannâ€“Whitney U test (UÂ =Â 37, *PÂ =Â 0.029). m, n, Time course of volume changes of stimulated and neighbouring spines with DA dip (j) and without DA dip (k). nÂ =Â 11 spines from 5 slices (m) and 14 spines from 6 slices (n). o, Average changes in spine volume. nÂ =Â 11 spines from 5 slices (dip 2Â s) and 14 spines from 6 slices (tonic). Two-sided Mannâ€“Whitney U test (UÂ =Â 10, **PÂ =Â 4.0Â Ã—Â 10âˆ’4). Scale bars in aâ€“d indicate 10Â Î¼m. Error bars indicate s.e.m. Samples of slices are biological replicates and spines are technical replicates (different spines from the same dendrite).
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Extended Data Fig. 9 AIP expression and effects of A2AR and D2R antagonists on the time courses of lick scores.
a, Averaged intensity of AIP expression used in the experiment for Fig. 4câ€“f (nÂ =Â 9 mice). Reference atlases are overlaid. b, Effects of AIP in conventional discrimination paradigm (Extended Data Fig. 1). nÂ =Â 8 mice for mCherry, nÂ =Â 6 mice for AIP. Two-sided Mannâ€“Whitney U test (UÂ =Â 10, *PÂ =Â 0.04). c, Schematic of drug infusion to the bilateral NAc. Drugs were infused through implanted bilateral cannula 30Â min before the task and infusion was continued throughout the task. d, e, Lick scores plotted against time for mice injected with SCH58261 (d) or sulpiride (e) during generalizationâ€“discrimination learning. Red bars indicate the periods of drug infusion (days 2 and 3). To control the experimental context, ACSF was infused during the discrimination test. Quantified results are presented in Fig. 4kâ€“n. nÂ =Â 6 mice for each group. f, Estimation of drug spreading. Averaged intensity of a fluorescent dye (Alexa 594, nÂ =Â 3 mice) that was injected through the unilateral cannula over the same period as in the discrimination tasks with overlaid reference atlases. Scale bars in a, f indicate 500Â Î¼m, 1Â s and 2Â Hz. Scale bars in b indicate 1Â s and 2Â Hz. Error bars indicate s.e.m. Samples of mice are biological replicates.
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Extended Data Fig. 10 Effects of MAP on locomotor activity and dopamine concentrations.
a, Experimental schedule for locomotor sensitization by MAP (1Â mgÂ kgâˆ’1). b, Representative locomotion traces during sensitization test 0â€“15Â min after administration. Scale bar, 10Â cm. c, Plots of average distances travelled in sensitization tests against time. nÂ =Â 7 (control) and 7 mice (MAP). d, Plots of average distances travelled by control mice (nÂ =Â 7) and MAP-treated mice (nÂ =Â 7). Two-sided Mannâ€“Whitney U test (UÂ =Â 2, **PÂ =Â 0.004). e, Schematic of virus injection. f, g, Confocal image of GRABDA1m expression (f) and locations of the tips of fibres plotted on the reference atlas (g). Grey areas indicate NAc core. Scale bar, 500Â Î¼m. h, GRABDA1m responses to MAP administration. Saline, 1Â mgÂ kgâˆ’1 MAP, or 4Â mgÂ kgâˆ’1 MAP were administered intraperitoneally in the home cage. nÂ =Â 7 mice. Each experiment was conducted on a separate day and the order of drug administration was counter-balanced. i, Plots of GRABDA1m responses 30â€“90 min after MAP injection. nÂ =Â 7 mice. Friedmanâ€™s test (Ï‡2(2)Â =Â 14, PÂ =Â 9.0Â Ã—Â 10âˆ’4.). Post hoc Steelâ€“Dwass test (saline versus MAP 1Â mgÂ kgâˆ’1, tÂ =Â 3.0, **PÂ =Â 0.008; saline versus MAP 4Â mgÂ kgâˆ’1, tÂ =Â 3.1, **PÂ =Â 0.005; MAP 1Â mgÂ kgâˆ’1 versus MAP 4Â mgÂ kgâˆ’1, tÂ =Â 2.4, *PÂ =Â 0.048). j, Lick scores of mice injected with GRABDA1m and treated with MAP. MAP was administered in the same way as in Fig. 5a. nÂ =Â 7 mice for saline, nÂ =Â 6 mice for MAP. k, l, Discrimination learning by mice used for GRABDA1m recording. nÂ =Â 7 mice for saline, nÂ =Â 6 mice for MAP. Two-sided Mannâ€“Whitney U test (UÂ =Â 2, **PÂ =Â 0.005). m, n, GRABDA1m responses to CSâˆ’ (m) and CS+ with US (n) averaged over discrimination task on day 2 and 3 from mice injected with saline (black) or MAP (blue). nÂ =Â 7 mice for saline, nÂ =Â 6 mice for MAP. DA dips in CSâˆ’ trials during discrimination task (m) were tested by two-sided Wilcoxon signed-rank test versus 0 (saline, WÂ =Â 0, *PÂ =Â 0.016; MAP, WÂ =Â 5, PÂ =Â 0.63). Dip size was evaluated by the z-score trough during 2â€“3Â s after CS onset to avoid contamination by decay of CS responses. Effects of MAP on dip size (m) and phasic DA responses to US (n) were tested by two-sided Mannâ€“Whitney U test (m, UÂ =Â 6, *PÂ =Â 0.035; n, UÂ =Â 13, PÂ =Â 0.25). Data were sampled during the discrimination sessions as indicated by the light green bar in j. o, p, GRABDA1m responses to CS+ and CSâˆ’ at discrimination test from mice injected with saline (o) or MAP (p). Two-sided Wilcoxon signed-rank test (saline, nÂ =Â 7 mice, WÂ =Â 27, *PÂ =Â 0.031; MAP, nÂ =Â 6 mice, WÂ =Â 14, PÂ =Â 0.56). Data were sampled during the discrimination test as indicated by the green bar in j. q, Schematics of CPP protocol with delays after MAP administration. Allocation of chambers A and B and order of MAP and saline injection were counter-balanced. r, Plots of time spent in chambers. Two-sided Wilcoxon signed-rank test (saline, nÂ =Â 10 mice, WÂ =Â 24, PÂ =Â 0.77; MAP 1Â mgÂ kgâˆ’1, nÂ =Â 12 mice, WÂ =Â 41, PÂ =Â 0.91; MAP 4Â mgÂ kgâˆ’1, nÂ =Â 12 mice, WÂ =Â 8, *PÂ =Â 0.012). s, Plots of lick scores of mice treated with MAP and infused with sulpiride in discrimination test. MAP was administered as in Fig. 5a. Pink bar indicates period of intra-NAc infusion of sulpiride. From days 2 to 4, either ACSF or sulpiride was infused for all the conditions to control the manipulation of infusion. nÂ =Â 5 mice. t, Lick traces in discrimination test (top) and plots of generalization indices (bottom). nÂ =Â 5 mice. u, Plots of Î”generalization indices for infusion with ACSF (nÂ =Â 7 mice, from Fig. 5f), sulpiride during the discrimination period (nÂ =Â 5 mice, from Fig. 5f) or sulpiride during the discrimination test (nÂ =Â 5 mice, green). Kruskalâ€“Wallis test (Ï‡2(2)Â =Â 10, PÂ =Â 0.007; post hoc Steelâ€™s test, ACSF versus sulpiride during discrimination, tÂ =Â 2.8, **PÂ =Â 0.009; ACSF versus sulpiride in discrimination test, tÂ =Â 0.08, PÂ =Â 0.99). v, Schematic of amperometric detection of ChR2-driven dopamine release in the NAc slice (top). Normalized time course of DA concentration in the presence and absence of MAP (3Â Î¼M) (bottom). Data shown in Fig. 3k and Fig. 4g are normalized to the baseline concentration. nÂ =Â 15 slices for no MAP, nÂ =Â 6 slices for MAP. w, Plots of decay time constant. nÂ =Â 15 slices for no MAP, nÂ =Â 6 slices for MAP. Two-sided Mannâ€“Whitney U test (UÂ =Â 13, *PÂ =Â 0.012). Error bars and shading indicate s.e.m. Vertical grey shading in mâ€“p indicates CS periods. Samples of mice and slices are biological replicates.
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