Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental demonstration of memory-enhanced quantum communication


The ability to communicate quantum information over long distances is of central importance in quantum science and engineering1. Although some applications of quantum communication such as secure quantum key distribution2,3 are already being successfully deployed4,5,6,7, their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security8. Alternatively, quantum repeaters9, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge10,11,12,13,14,15,16, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator17,18,19 to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks20,21.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Concept of memory-enhanced quantum communication.
Fig. 2: Realization of heralded spin–photon gate.
Fig. 3: Asynchronous BSMs using quantum memory.
Fig. 4: Performance of memory-assisted quantum communication.

Data availability

All data related to the current study are available from the corresponding author on reasonable request.


  1. 1.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. Int. Conf. on Computers, Systems and Signal Processing Vol. 1, 175–179 (IEEE Computer Society, IEEE Circuits and Systems Society, Indian Institute of Science, 1984).

  3. 3.

    Shor, P. W. & Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  Article  Google Scholar 

  5. 5.

    Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Zhang, Q., Xu, F., Chen, Y.-A., Peng, C.-Z. & Pan, J.-W. Large scale quantum key distribution: challenges and solutions. Opt. Express 26, 24260–24273 (2018).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Pirandola, S. et al. Advances in quantum cryptography. Preprint at (2019).

  8. 8.

    Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430(2012).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  16. 16.

    Kaneda, F., Xu, F., Chapman, J. & Kwiat, P. G. Quantum-memory-assisted multi-photon generation for efficient quantum information processing. Optica 4, 1034–1037 (2017).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Phys. Rev. Appl. 8, 024026 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Nguyen, C. T. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Khabiboulline, E. T., Borregaard, J., De Greve, K. & Lukin, M. D. Optical interferometry with quantum networks. Phys. Rev. Lett. 123, 070504 (2019).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Minder, M. et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon. 13, 334–338 (2019).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Memory-assisted measurement-device-independent quantum key distribution. New J. Phys. 16, 043005 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    ADS  Article  Google Scholar 

  27. 27.

    Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    MathSciNet  Article  Google Scholar 

  28. 28.

    Curty, M. et al. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    ADS  Article  Google Scholar 

  30. 30.

    Biham, E., Huttner, B. & Mor, T. Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651–2658 (1996).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  31. 31.

    Machielse, B. et al. Quantum interference of electromechanically stabilized emitters in nanophotonic devices. Phys. Rev. X 9, 031022 (2019).

    CAS  Google Scholar 

  32. 32.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Preprint at (2019).

  34. 34.

    Trusheim, M. E. et al. Lead-related quantum emitters in diamond. Phys. Rev. B 99, 075430 (2019).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Burek, M. J. et al. High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Atikian, H. A. et al. Freestanding nanostructures via reactive ion beam angled etching. APL Photon. 2, 051301 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Phys. Rev. B 100, 165428 (2019).

    ADS  CAS  Article  Google Scholar 

  39. 39.

    de Riedmatten, H. et al. Tailoring photonic entanglement in high-dimensional Hilbert spaces. Phys. Rev. A 69, 050304 (2004).

    Article  Google Scholar 

  40. 40.

    Sasaki, T., Yamamoto, Y. & Koashi, M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014).

    ADS  CAS  Article  Google Scholar 

Download references


We thank P. Stroganov, K. de Greve, J. Borregaard, E. Bersin, B. Dixon, R. Murphy and N. Sinclair for discussions and experimental help, V. Anant from PhotonSpot for providing SNSPDs, and J. MacArthur for assistance with electronics. This work was supported by the NSF, CUA, DoD/ARO DURIP, AFOSR MURI, ONR MURI, ARL, DOE and a Vannevar Bush Faculty Fellowship. Devices were fabricated at Harvard CNS, NSF award no. 1541959. M.K.B. and D.S.L. acknowledge support from an NDSEG Fellowship. R.R. acknowledges support from the Alexander von Humboldt Foundation. B.M. and E.N.K. acknowledge support from an NSF GRFP.

Author information




M.K.B., R.R., B.M., D.S.L., C.T.N., D.D.S. and M.D.L. planned the experiment, B.M. and E.N.K. fabricated the devices, M.K.B., R.R., B.M., D.S.L., C.T.N. and D.D.S. built the set-up, performed the experiment and analysed the data. All work was supervised by H.P., D.E., M.L. and M.D.L. All authors discussed the results and contributed to the manuscript. M.K.B., R.R., B.M., D.S.L. and C.T.N. contributed equally to this work.

Corresponding author

Correspondence to M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Josh Nunn and Wolfgang Tittel for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental schematic.

a, Control flow of experiment. HSDIO (National Instruments) is a digital signal generator that synchronizes the experiment. Opt (MW) AWG is a Tektronix AWG7122B 5 GS/s (Tektronix AWG70001a 50 GS/s) arbitrary waveform generator used to generate photonic qubits (microwave control signals). All signals are recorded on a time-tagger (TT, PicoQuant HydraHarp 400). b, Fibre network used to deliver photons to and collect photons from the memory device, including elements for polarization control and diagnostic measurements of coupling efficiencies using photodiodes M1, M2 and MC. c, Preparation of optical fields. The desired phase relation between lock and qubit paths is ensured by modulating AOMs using phase-locked RF sources with a precise 1.8 MHz frequency shift between them. The AM (amplitude modulator) and ΦM (phase modulator) are used to define the photonic qubits.

Extended Data Fig. 2 Characterization of device cooperativity.

a, Cavity reflection spectrum far-detuned (blue) and on resonance (red) with SiV centre. Blue solid line is a fit to a Lorentzian, enabling extraction of linewidth κ = 21.8 GHz. Red solid line is a fit to a model used to determine the single-photon Rabi frequency g = 8.38 ± 0.05 GHz and shows the onset of a normal mode splitting. b, Measurement of SiV linewidth far detuned (Δc = 248 GHz) from cavity resonance. Red solid line is a fit to a Lorentzian, enabling extraction of natural linewidth γ = 0.123 GHz.

Extended Data Fig. 3 Microwave characterization of spin-coherence properties.

a, Optically detected magnetic resonance spectrum of the qubit transition at ~12 GHz split by coupling to a nearby 13C. b, Rabi oscillations, read out via the population in the |↑〉 state (p) showing π time of τR = 30 ns. A π time of 32 ns is used for experiments reported in the main text. c, XY8-1 dynamical decoupling signal (unnormalized) as a function of total time T, showing coherence lasting on the timescale of several hundred microseconds. d, XY8-8 dynamical decoupling signal (normalized) revealing a region of high fidelity at the relevant value of 2τ = 142 ns. e, Fidelity of spin state after a dynamical decoupling sequence with varying numbers of π pulses (Nπ; blue points). Red point (diamond) is under illumination with 〈nm = 0.02.

Extended Data Fig. 4 Measurements on a single time-bin qubit in Z and X bases.

a, Example of optical pulses sent in the experiment described in Fig. 2d. b, Time trace of detected photons on the + detector (see Fig. 2a) when the pulses shown in a are sent directly into the TDI. The first and last peaks correspond to late and early photons taking the long and short paths of the TDI, which enable measurements in the Z basis, {|e〉,|l〉}. The central bin corresponds to the late and early components overlapping and interfering constructively to come out of the + port, equivalent to a measurement of the time-bin qubit in the |+x〉 state. A detection event in this same timing window on the other detector (not shown) would constitute a |−x〉 measurement. In this measurement, the TDI was left unlocked, so we observe no interference in the central window.

Extended Data Fig. 5 Performance of memory device versus channel loss.

a, Enhancement of memory-based approach compared to direct-transmission approach, keeping N = 124 fixed and varying 〈nm in order to vary the effective channel transmission probability, pA→B. At high pA→B (larger 〈nm), rs approaches 0 owing to increased QBER arising from undetected scattering of a third photon. b, Left, plot of QBER for same sweep of 〈nm shown in a. Right, plot of QBER while sweeping N in order to vary loss. These points correspond to the same data shown in Fig. 4. At lower pA→B (larger N), microwave-induced heating-related dephasing leads to increased QBER. Vertical error bars, 68% confidence interval; horizontal error bars, s.d. of the systematic power fluctuations.

Extended Data Table 1 High-level experimental sequence
Extended Data Table 2 Main experimental sequence
Extended Data Table 3 Truth table of asynchronous BSM protocol
Extended Data Table 4 Quantum-memory-based advantage

Supplementary information

Supplementary Information

Details about the theoretical description of Bell-state measurement and analysis of the quantum communication experiment.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, M.K., Riedinger, R., Machielse, B. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing