Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Late Cretaceous neornithine from Europe illuminates the origins of crown birds


Our understanding of the earliest stages of crown bird evolution is hindered by an exceedingly sparse avian fossil record from the Mesozoic era. The most ancient phylogenetic divergences among crown birds are known to have occurred in the Cretaceous period1,2,3, but stem-lineage representatives of the deepest subclades of crown birds—Palaeognathae (ostriches and kin), Galloanserae (landfowl and waterfowl) and Neoaves (all other extant birds)—are unknown from the Mesozoic era. As a result, key questions related to the ecology4,5, biogeography3,6,7 and divergence times1,8,9,10 of ancestral crown birds remain unanswered. Here we report a new Mesozoic fossil that occupies a position close to the last common ancestor of Galloanserae and fills a key phylogenetic gap in the early evolutionary history of crown birds10,11. Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian age of Belgium (66.8–66.7 million years ago), is represented by a nearly complete, three-dimensionally preserved skull and associated postcranial elements. The fossil represents one of the only well-supported crown birds from the Mesozoic era12, and is the first Mesozoic crown bird with well-represented cranial remains. Asteriornis maastrichtensis exhibits a previously undocumented combination of galliform (landfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a previously reported Ichthyornis-like taxon from the same locality13 provides direct evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan origin of crown birds3, and its relatively small size and possible littoral ecology may corroborate proposed ecological filters4,5,9 that influenced the persistence of crown birds through the end-Cretaceous mass extinction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Digitally segmented skull of Asteriornis maastrichtensis.
Fig. 2: Comparative quadrate and skull morphology of selected total-group Galloanserae.
Fig. 3: Relationships of A. maastrichtensis and stratigraphic provenance of holotype.

Data availability

The holotype specimen of A. maastrichtensis is deposited in the permanent collection of the Natuurhistorisch Museum Maastricht under collection number NHMM 2013 008. Digital models of the A. maastrichtensis skull and postcranial elements, .tre files from phylogenetic analyses and CT scans of the A. maastrichtensis holotype are available at Zenodo (doi: 10.5281/zenodo.3610226). The Life Science Identifier for Asteriornis is


  1. 1.

    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    ADS  CAS  PubMed  Google Scholar 

  2. 2.

    Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Claramunt, S. & Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Field, D. J. et al. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr. Biol. 28, 1825–1831 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Mayr, G. Avian higher level biogeography: Southern Hemispheric origins or Southern Hemispheric relicts? J. Biogeogr. 44, 956–958 (2017).

    Google Scholar 

  7. 7.

    Saupe, E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. USA 116, 12895–12900 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    Ksepka, D. T. & Phillips, M. J. Avian diversification patterns across the K–Pg boundary: influence of calibrations, datasets, and model misspecification. Ann. Mo. Bot. Gard. 100, 300–328 (2015).

    Google Scholar 

  9. 9.

    Berv, J. S. & Field, D. J. Genomic signature of an avian Lilliput effect across the K–Pg extinction. Syst. Biol. 67, 1–13 (2018).

    PubMed  Google Scholar 

  10. 10.

    Field, D. J. et al. Timing the extant avian radiation: the rise of modern birds, and the importance of modeling molecular rate variation. PeerJ Preprints 7, e27521v1 (2019).

  11. 11.

    Mayr, G. Avian Evolution (Wiley, 2016).

  12. 12.

    Clarke, J. A., Tambussi, C. P., Noriega, J. I., Erickson, G. M. & Ketcham, R. A. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433, 305–308 (2005).

    ADS  CAS  PubMed  Google Scholar 

  13. 13.

    Dyke, G. J. et al. Europe’s last Mesozoic bird. Naturwissenschaften 89, 408–411 (2002).

    ADS  CAS  PubMed  Google Scholar 

  14. 14.

    Xing, L., Stanley, E. L., Bai, M. & Blackburn, D. C. The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber. Sci. Rep. 8, 8770 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).

    ADS  PubMed  Google Scholar 

  16. 16.

    Evers, S. W., Barrett, P. M. & Benson, R. B. J. Anatomy of Rhinochelys pulchriceps (Protostegidae) and marine adaptation during the early evolution of chelonioids. PeerJ 7, e6811 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Bi, S. et al. An Early Cretaceous eutherian and the placental–marsupial dichotomy. Nature 558, 390–395 (2018).

    ADS  CAS  PubMed  Google Scholar 

  18. 18.

    Lee, M. S. Y. & Yates, A. M. Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proc. R. Soc. Lond. B 285, 20181071 (2018).

    Google Scholar 

  19. 19.

    Hope, S. in Mesozoic Birds: Above the Heads of Dinosaurs (eds Chiappe, L. M. & Witmer, L. M.) 339–388 (Univ. California Press, 2002).

  20. 20.

    Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Mayr, G. Paleogene Fossil Birds (Springer, 2009).

  22. 22.

    Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A. & Jones, M. M. Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth Planet. Sci. Lett. 452, 272–280 (2016).

    ADS  CAS  Google Scholar 

  23. 23.

    Gauthier, J. A. & de Queiroz, K. in New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. & Gall, L. F.) 7–41 (Peabody Museum of Natural History, Yale University, 2001).

  24. 24.

    Keutgen, N. A bioclast-based astronomical timescale for the Maastrichtian in the type area (southeast Netherlands, northeast Belgium) and stratigraphic implications: the legacy of PJ Felder. Neth. J. Geosci. 97, 229–260 (2018).

    Google Scholar 

  25. 25.

    Field, D. J., Lynner, C., Brown, C. & Darroch, S. A. F. Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS One 8, e82000 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Olson, S. L. & Feduccia, A. Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae). Smithson. Contrib. Zool. 323, 1–24 (1980).

    Google Scholar 

  27. 27.

    Elzanowski, A. & Stidham, T. A. Morphology of the quadrate in the Eocene anseriform Presbyornis and extant galloanserine birds. J. Morphol. 271, 305–323 (2010).

    PubMed  Google Scholar 

  28. 28.

    Worthy, T. H., Degrange, F. J., Handley, W. D. & Lee, M. S. Y. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). R. Soc. Open Sci. 4, 170975 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tambussi, C. P., Degrange, F. J., De Mendoza, R. S., Sferco, E. & Santillana, S. A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl. Zool. J. Linn. Soc. 186, 673–700 (2019).

    Google Scholar 

  30. 30.

    Mayr, G., De Pietri, V. L., Love, L., Mannering, A. & Scofield, R. P. Oldest, smallest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds. Pap. Palaeontol. (2019).

  31. 31.

    Budd, G. E. & Mann, R. P. The dynamics of stem and crown groups. Sci. Adv. 6, eaaz1626 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ksepka, D. T. & Clarke, J. Phylogenetically vetted and stratigraphically constrained fossil calibrations within Aves. Palaeontologia Electronica 18, 18.1.3FC (2015).

    Google Scholar 

  33. 33.

    Mayr, G., De Pietri, V. L., Scofield, R. P. & Worthy, T. H. On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 – neornithine birds from the Upper Cretaceous of the Southern Hemisphere. Cretaceous Research 86, 178–185 (2018).

    Google Scholar 

  34. 34.

    Clarke, J. A. et al. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538, 502–505 (2016).

    ADS  PubMed  Google Scholar 

  35. 35.

    Agnolín, F. L., Egli, F. B., Chatterjee, S., Marsà, J. A. G. & Novas, F. E. Vegaviidae, a new clade of southern diving birds that survived the K/T boundary. Naturwissenschaften 104, 87 (2017).

    PubMed  Google Scholar 

  36. 36.

    O’Connor, J. K., Chiappe, L. M. & Bell, A. in Living Dinosaurs: The Evolutionary History of Modern Birds (eds Dyke, G. & Kaiser, G.) 39–114 (Wiley-Blackwell, 2011).

  37. 37.

    Cracraft, J. in The Phylogeny and Classification of the Tetrapods Vol. 1 (ed. Benton, M. J.) 339–361 (Oxford Univ. Press, 1988).

  38. 38.

    Livezey, B. C. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zool. J. Linn. Soc. 121, 361–428 (1997).

    Google Scholar 

  39. 39.

    Cracraft, J. & Clarke, J. The basal clades of modern birds. In New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. & Gall, L. F.) 143–156 (Peabody Museum of Natural History, Yale University, 2001).

  40. 40.

    Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Field, D. J. Endless skulls most beautiful. Proc. Natl Acad. Sci. USA 115, 448–450 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Huxley, T. H. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observable in that class. Proc. Zool. Soc. Lond. 1867, 415–472 (1867).

    Google Scholar 

  43. 43.

    Ericson, P. G. P. Systematic relationships of the Palaeogene family Presbyornithidae (Aves: Anseriformes). Zool. J. Linn. Soc. 121, 429–483 (1997).

    Google Scholar 

  44. 44.

    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Bright, J. A., Marugán-Lobón, J., Rayfield, E. J. & Cobb, S. N. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol. Biol. 19, 104 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Field, D. J. & Hsiang, A. Y. A North American stem turaco, and the complex biogeographic history of modern birds. BMC Evol. Biol. 18, 102 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mourer-Chauviré, C. Les oiseaux fossiles des phosphorites du Quercy (Éocène supérieur a Oligocène supérieur): implications paléobiogéographiques. Geobios 15, 413–426 (1982).

    Google Scholar 

  48. 48.

    Mayr, G. Two-phase extinction of “Southern Hemispheric” birds in the Cenozoic of Europe and the origin of the Neotropic avifauna. Palaeobiodivers. Palaeoenviron. 91, 325–333 (2011).

    Google Scholar 

  49. 49.

    O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 63, 13–27 (2020).

    Google Scholar 

  50. 50.

    Feduccia, A. Explosive evolution in tertiary birds and mammals. Science 267, 637–638 (1995).

    ADS  CAS  PubMed  Google Scholar 

  51. 51.

    Clarke, J. A. Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bull. Am. Mus. Nat. Hist. 286, 1–179 (2004).

    Google Scholar 

  52. 52.

    Field, D. J. et al. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–100 (2018).

    ADS  CAS  PubMed  Google Scholar 

  53. 53.

    Mayr, G. & Weidig, I. The early Eocene bird Gallinuloides wyomingensis – a stem group representative of Galliformes. Acta Palaeontol. Pol. 49, 211–217 (2004).

    Google Scholar 

  54. 54.

    Ksepka, D. T. Broken gears in the avian molecular clock: new phylogenetic analyses support stem galliform status for Gallinuloides wyomingensis and rallid affinities for Amitabha urbsinterdictensis. Cladistics 25, 173–197 (2009).

    Google Scholar 

  55. 55.

    Mayr, G. & Rubilar-Rogers, D. Osteology of a new giant bony-toothed bird from the Miocene of Chile, with a revision of the taxonomy of Neogene Pelagornithidae. J. Vertebr. Paleontol. 30, 1313–1330 (2010).

    Google Scholar 

  56. 56.

    Bourdon, E. Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 92, 586–591 (2005).

    ADS  CAS  PubMed  Google Scholar 

  57. 57.

    Mayr, G. Cenozoic mystery birds - on the phylogenetic affinities of bony-toothed birds (Pelagornithidae). Zool. Scr. 40, 448–467 (2011).

    Google Scholar 

  58. 58.

    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Google Scholar 

  59. 59.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE 2010) 45–53 (IEEE, 2010).

  61. 61.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  PubMed  Google Scholar 

  62. 62.

    Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    ADS  CAS  PubMed  Google Scholar 

  63. 63.

    Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    PubMed  Google Scholar 

  64. 64.

    Kealy, S. & Beck, R. Total evidence phylogeny and evolutionary timescale for Australian faunivorous marsupials (Dasyuromorphia). BMC Evol. Biol. 17, 240 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Vinther, J., Parry, L., Briggs, D. E. & Van Roy, P. Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan. Nature 542, 471–474 (2017).

    ADS  CAS  PubMed  Google Scholar 

  66. 66.

    Gill, F., Donsker, D & Rasmussen, P. (eds) IOC World Bird List (v.10.1) (2020).

  67. 67.

    Field, D. J., LeBlanc, A., Gau, A. & Behlke, A. D. B. Pelagic neonatal fossils support viviparity and precocial life history of Cretaceous mosasaurs. Palaeontology 58, 401–407 (2015).

    Google Scholar 

  68. 68.

    Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS  CAS  PubMed  Google Scholar 

  70. 70.

    Phillips, M. J. Geomolecular dating and the origin of placental mammals. Syst. Biol. 65, 546–557 (2016).

    PubMed  Google Scholar 

  71. 71.

    He, H. Y. et al. Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications. Geophys. Res. Lett. 31, (2004).

  72. 72.

    Wang, X. et al. The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines. Sci. Rep. 8, 3969 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Musser, G., Ksepka, D. T. & Field, D. J. New material of Paleocene-Eocene Pellornis (Aves: Gruiformes) clarifies the pattern and timing of the extant Gruiform radiation. Diversity 11, 102 (2019).

    Google Scholar 

  74. 74.

    Ksepka, D. T., Stidham, T. A. & Williamson, T. E. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction. Proc. Natl Acad. Sci. USA 114, 8047–8052 (2017).

    ADS  CAS  PubMed  Google Scholar 

  75. 75.

    Parham, J. F. et al. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012).

    PubMed  Google Scholar 

  76. 76.

    Püschel, H. P., O'Reilly, J. E., Pisani, D. & Donoghue, P. C. J. The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates. Palaeontology 63, 67–83 (2020).

    Google Scholar 

  77. 77.

    Worthy, T. H. et al. Osteology supports a stem-galliform affinity for the giant extinct flightless bird Sylviornis neocaledoniae (Sylviornithidae, Galloanseres). PLoS One 11, e0150871 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).

    CAS  PubMed  Google Scholar 

  79. 79.

    Reddy, S. et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 66, 857–879 (2017).

    CAS  PubMed  Google Scholar 

  80. 80.

    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    ADS  CAS  PubMed  Google Scholar 

  81. 81.

    Kimball, R. T. et al. A phylogenomic supertree of birds. Diversity 11, 109 (2019).

    Google Scholar 

  82. 82.

    Dunning, J. B. CRC Handbook of Avian Body Masses 2nd edn (CRC Press, 2007).

Download references


We thank M. van Dinther for collecting and donating the specimen; J. Vellekoop for advice on geochronology; K. Smithson, T. Thompson and V. Fernandez for scanning support; M. Brooke, M. Lowe, M. Clementz, L. Vietti, J. Cooper, J. White, C. Levitt, R. Irmis, K. MacKenzie and J. Sertich for collections assistance; B. Creisler for etymological information; and T. Worthy and J. Watanabe for anatomical advice. We are grateful to L. Witmer and F. Degrange for sharing three-dimensional models of Presbyornis and Conflicto, respectively, and to P. Krzeminski for his artwork. D.J.F. acknowledges support from the UK Research and Innovation Future Leaders Fellowship MR/S032177/1, the Royal Society Research Grant RGS/R2/192390, a Systematics Association Research Grant and the Isaac Newton Trust; J.B. acknowledges the Hesse Award from the American Ornithological Society and grants from the Jurassic Foundation, Geological Association and Paleontological Society; and D.T.K. acknowledges support from the NSF award DEB 1655736.

Author information




J.W.M.J. provided the material and stratigraphic data; D.J.F. prepared the specimens; D.J.F. and J.B. acquired CT scans and discovered the skull; D.J.F., J.B. and A.C. performed digital segmentation of the material and created figures; D.J.F., J.B., A.C. and D.T.K. performed anatomical comparisons; J.B. and A.C. performed the phylogenetic analyses; and D.J.F. wrote the paper, with contributions from all authors.

Corresponding author

Correspondence to Daniel J. Field.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jingmai O’Connor and Kevin Padian for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Detailed cranial and mandibular anatomy of A. maastrichtensis (NHMM 2013 008).

The views of the cranium are similar to those in Fig. 1, but with the jaws removed to illustrate the ventral portion of the skull.

Extended Data Fig. 2 Higher-resolution cranial and mandibular anatomy of A. maastrichtensis (NHMM 2013 008).

Labels have been removed and images enlarged to show details.

Extended Data Fig. 3 Morphology of individually segmented skull elements from A. maastrichtensis (NHMM 2013 008).

Dorsal, ventral and rostral views of the frontals show the nasals separated from their in situ position to illustrate the morphology of the nasofrontal contact. Scale bars, 1 cm.

Extended Data Fig. 4 Detailed comparisons of galloanseran quadrate morphology.

Skulls and quadrates of extant Galliformes and total-group Anseriformes. The skull of Presbyornis USNM 299846 is shown. Scale bars, 5 mm (quadrates); 1 cm (skulls). Skulls are in left lateral view except Presbyornis, which is in reflected right lateral view. FPB, foramen pneumaticum basiorbitale; FPR, foramen pneumaticum rostromediale.

Extended Data Fig. 5 Detailed comparisons of galloanseran retroarticular morphology.

Retroarticular regions of left mandibles in lateral (left), medial (middle) and dorsal (right) views. Both the left and right mandibles of Asteriornis are shown in dorsal view, as the retroarticular process is only preserved on the left mandible and the medial process is only preserved on the right mandible. Images of Anatalavis are mirrored. Scale bars, 1 cm.

Extended Data Fig. 6 Postcranial morphology of A. maastrichtensis (NHMM 2013 008).

The left distal femur of Presbyornis pervetus (UW 27596) is shown for comparison.

Extended Data Fig. 7 Internal composition of NHMM 2013 008 blocks.

a, Block containing the left femur, left tibiotarsus and the main portion of the skull, viewed from the side with the femur exposed. b, Same block as in a, viewed from the side containing the tibiotarsus. c, Block containing the right femur and tarsometatarsus. d, Block containing the right distal radius, several unidentified bone fragments and a portion of the cranial roof near the frontoparietal suture. e, Block containing the right tibiotarsus. Numerous fragments of fossil echinoderms and molluscs are visible within the blocks. Scale bars, 1 cm.

Extended Data Fig. 8 Relative body size of A. maastrichtensis.

Estimate of the mean body size of the Asteriornis holotype25 compared with extant Galloanserae82, ranked on the x axis from smallest to largest. The mean body-size estimate for Asteriornis (394 g) is closest to that of male Anas crecca (392 g; 7.8th percentile among Anseriformes) and female Perdix perdix (393 g; 33rd percentile among Galliformes).

Extended Data Fig. 9 Expanded phylogenetic results.

a, Results of the parsimony analysis. Asteriornis (pink) resolves as the sister taxon to crown Galloanserae. b, Results of the tip-dated Bayesian analysis with a soft-maximum neornithine root age of 86.5 million years. An estimated timescale is shown on the x axis, although see caveats relating to divergence times in the Supplementary Information. Asteriornis (pink) resolves as the stemward-most member of Pangalliformes. Colours match those in Fig. 3 and extinct taxa are denoted with daggers. See Supplementary Information for full details of phylogenetic analyses, character information, synapomorphies of key clades, support values and tree files.

Supplementary information

Supplementary Information

This file contains: Museum Abbreviations, Scan Parameters, Supplementary Video Descriptions, Supplementary Methods (Phylogenetic Analyses), and Supplementary Notes (Provenance Data for New Fossil Material, Phylogenetic Definitions of Clade Names, Additional Anatomical Observations, Synapomorphies Diagnosing Key Clades, Morphological Character Descriptions, Supplementary References) – see Contents page for details.

Reporting Summary

Supplementary Data

Character-taxon matrix: Nexus file used for the phylogenetic analyses.

Video 1

NHMM 2013 008, Skull of Asteriornis maastrichtensis holotype, yaw video.

Video 2

NHMM 2013 008, Skull of Asteriornis maastrichtensis holotype, roll video.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Field, D.J., Benito, J., Chen, A. et al. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579, 397–401 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing