Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Loopy Lévy flights enhance tracer diffusion in active suspensions

Abstract

Brownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features1. The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms2, differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient3,4,5,6,7,8,9,10 and non-Gaussian statistics of the tracer displacements6,9,10. Although these characteristic features have been extensively observed experimentally, there is so far no comprehensive theory explaining how they emerge from the microscopic dynamics of the system. Here we develop a theoretical framework to model the hydrodynamic interactions between the tracer and the active swimmers, which shows that the tracer follows a non-Markovian coloured Poisson process that accounts for all empirical observations. The theory predicts a long-lived Lévy flight regime11 of the loopy tracer motion with a non-monotonic crossover between two different power-law exponents. The duration of this regime can be tuned by the swimmer density, suggesting that the optimal foraging strategy of swimming microorganisms might depend crucially on their density in order to exploit the Lévy flights of nutrients12. Our framework can be applied to address important theoretical questions, such as the thermodynamics of active systems13, and practical ones, such as the interaction of swimming microorganisms with nutrients and other small particles14 (for example, degraded plastic) and the design of artificial nanoscale machines15.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of the microscopic model.
Fig. 2: Simulation results confirming the theoretical predictions.
Fig. 3: Force exerted on the tracer by the swimmers.

Data and code availability

The data supporting the findings of this study are reproducible by a simulation code available at https://doi.org/10.5281/zenodo.3550834. The time series data used in Figs. 1b, 3a are accessible at https://doi.org/10.5281/zenodo.3550838. Other data are available from T.G.S. (tomohiko@yukawa.kyoto-u.ac.jp) upon request.

References

  1. 1.

    Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    CAS  ADS  Article  Google Scholar 

  2. 2.

    Koch, D. L. & Subramanian, G. Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 637–659 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Wu, X.-L. & Libchaber, A. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, 3017 (2000).

    CAS  ADS  Article  Google Scholar 

  4. 4.

    Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I. & Goldstein, R. E. Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103, 198103 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Miño, G. et al. Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106, 048102 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Kurtuldu, H., Guasto, J. S., Johnson, K. A. & Gollub, J. P. Enhancement of biomixing by swimming algal cells in two-dimensional films. Proc. Natl Acad. Sci. USA 108, 10391–10395 (2011).

    CAS  ADS  Article  Google Scholar 

  7. 7.

    Miño, G. L., Dunstan, J., Rousselet, A., Clément, E. & Soto, R. Induced diffusion of tracers in a bacterial suspension: theory and experiments. J. Fluid Mech. 729, 423–444 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Jepson, A., Martinez, V. A., Schwarz-Linek, J., Morozov, A. & Poon, W. C. K. Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria. Phys. Rev. E 88, 041002 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Jeanneret, R., Pushkin, D. O., Kantsler, V. & Polin, M. Entrainment dominates the interaction of microalgae with micron-sized objects. Nat. Commun. 7, 12518 (2016).

    CAS  ADS  Article  Google Scholar 

  10. 10.

    Kurihara, T., Aridome, M., Ayade, H., Zaid, I. & Mizuno, D. Non-Gaussian limit fluctuations in active swimmer suspensions. Phys. Rev. E 95, 030601 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Hughes, B. D., Shlesinger, M. F. & Montroll, E. W. Random walks with self-similar clusters. Proc. Natl Acad. Sci. USA 78, 3287–3291 (1981).

    CAS  ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Bartumeus, F., Catalan, J., Fulco, U., Lyra, M. & Viswanathan, G. Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys. Rev. Lett. 88, 097901 (2002).

    CAS  ADS  Article  Google Scholar 

  13. 13.

    Kanazawa, K., Sano, T. G., Sagawa, T. & Hayakawa, H. Minimal model of stochastic athermal systems: origin of non-Gaussian noise. Phys. Rev. Lett. 114, 090601 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Goldstein, R. E. Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47, 343–375 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Gardiner, C. W. Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer-Verlag, 2009).

  17. 17.

    Coffey, W. T. & Kalmykov, Y. P. The Langevin Equation (World Scientific, 2004).

  18. 18.

    Dunkel, J., Putz, V. B., Zaid, I. M. & Yeomans, J. M. Swimmer-tracer scattering at low Reynolds number. Soft Matter 6, 4268–4276 (2010).

    CAS  ADS  Article  Google Scholar 

  19. 19.

    Lin, Z., Thiffeault, J.-L. & Childress, S. Stirring by squirmers. J. Fluid Mech. 669, 167–177 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Morozov, A. & Marenduzzo, D. Enhanced diffusion of tracer particles in dilute bacterial suspensions. Soft Matter 10, 2748–2758 (2014).

    CAS  ADS  Article  Google Scholar 

  21. 21.

    Pushkin, D. O. & Yeomans, J. M. Fluid mixing by curved trajectories of microswimmers. Phys. Rev. Lett. 111, 188101 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Thiffeault, J.-L. Distribution of particle displacements due to swimming microorganisms. Phys. Rev. E 92, 023023 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Zaid, I. M., Dunkel, J. & Yeomans, J. M. Lévy fluctuations and mixing in dilute suspensions of algae and bacteria. J. R. Soc. Interface 8, 1314–1331 (2011).

    Article  Google Scholar 

  24. 24.

    Zaid, I. & Mizuno, D. Analytical limit distributions from random power-law interactions. Phys. Rev. Lett. 117, 030602 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Holtsmark, J. Über die Verbreiterung von Spektrallinien. Ann. Phys. 363, 577–630 (1919).

    Article  Google Scholar 

  26. 26.

    Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 108, 10940–10945 (2011).

    CAS  ADS  Article  Google Scholar 

  28. 28.

    Drescher, K., Goldstein, R. E., Michel, N., Polin, M. & Tuval, I. Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105, 168101 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Campbell, N. The study of discontinuous phenomena. Proc. Camb. Philos. Soc. 15, 117–136 (1909).

    Google Scholar 

  30. 30.

    Mantegna, R. N. & Stanley, H. E. Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946 (1994).

    CAS  ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Wang, B., Kuo, J., Bae, S. C. & Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater. 11, 481–485 (2012).

    CAS  ADS  Article  Google Scholar 

  32. 32.

    Chechkin, A. V., Seno, F., Metzler, R. & Sokolov, I. M. Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities. Phys. Rev. X 7, 021002 (2017).

    Google Scholar 

  33. 33.

    Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).

    CAS  ADS  Article  Google Scholar 

  34. 34.

    Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J. & Sims, D. W. Foraging success of biological Lévy flights recorded in situ. Proc. Natl Acad. Sci. USA 109, 7169–7174 (2012).

    CAS  ADS  Article  Google Scholar 

  35. 35.

    Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 83, 81–129 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Mizuno, H. Takayasu, M. Takayasu, H. Hayakawa and F. van Wijland for discussions. This work was supported by a Grant-in-Aid for JSPS Fellows (grant number 16J05315), JSPS KAKENHI (grant numbers 16K16016 and 18K13519) and a Research Fellowship granted by the Royal Commission for the Exhibition of 1851. A.C. acknowledges the hospitality of the Yukawa Institute for Theoretical Physics, Kyoto University as well as financial support. Simulations and numerical calculations were carried out using the Cray XC40 supercomputer at Yukawa Institute for Theoretical Physics in Kyoto University.

Author information

Affiliations

Authors

Contributions

K.K., T.G.S., A.C. and A.B. designed the research and interpreted the results. K.K. and A.C. performed analytical calculations. T.G.S. performed numerical simulations. A.B. managed the project. K.K., A.C. and A.B. wrote the paper.

Corresponding author

Correspondence to Kiyoshi Kanazawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Andreas Menzel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains details on the simulation protocol and the theoretical framework including all technical calculations.

Video 1

Example trajectory of the passive tracer. This video shows a typical trajectory of the passive tracer and the corresponding force time series. The dynamics of the tracer is simulated according to equations (1) and (2).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanazawa, K., Sano, T.G., Cairoli, A. et al. Loopy Lévy flights enhance tracer diffusion in active suspensions. Nature 579, 364–367 (2020). https://doi.org/10.1038/s41586-020-2086-2

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing