Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limits on gas impermeability of graphene

Abstract

Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids1,2,3,4,5,6,7,8,9,10. This conclusion is based on theory3,4,5,6,7,8 and supported by experiments1,9,10 that could not detect gas permeation through micrometre-size membranes within a detection limit of 105 to 106 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport11,12. Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The impermeability of graphene to helium.
Fig. 2: Hydrogen permeation through defect-free graphene.

Data availability

All the mentioned data to support this study and its conclusions are available upon request from P.Z.S. (pengzhan.sun@manchester.ac.uk).

References

  1. 1.

    Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  2. 2.

    Berry, V. Impermeability of graphene and its applications. Carbon 62, 1–10 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Leenaerts, O., Partoens, B. & Peeters, F. M. Graphene: a perfect nanoballoon. Appl. Phys. Lett. 93, 193107 (2008).

    ADS  Article  CAS  Google Scholar 

  4. 4.

    Tsetseris, L. & Pantelides, S. T. Graphene: an impermeable or selectively permeable membrane for atomic species? Carbon 67, 58–63 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Miao, M., Nardelli, M. B., Wang, Q. & Liu, Y. First principles study of the permeability of graphene to hydrogen atoms. Phys. Chem. Chem. Phys. 15, 16132–16137 (2013).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Seel, M. & Pandey, R. Proton and hydrogen transport through two-dimensional monolayers. 2D Mater. 3, 025004 (2016).

    Article  CAS  Google Scholar 

  7. 7.

    Feng, Y. et al. Hydrogenation facilitates proton transfer through two-dimensional honeycomb crystals. J. Phys. Chem. Lett. 8, 6009–6014 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Wang, W. L. & Kaxiras, E. Graphene hydrate: theoretical prediction of a new insulating form of graphene. New J. Phys. 12, 125012 (2010).

    ADS  Article  CAS  Google Scholar 

  9. 9.

    Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10.

    Wang, L. et al. Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nat. Nanotechnol. 10, 785–790 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  11. 11.

    Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  12. 12.

    Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  15. 15.

    Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  16. 16.

    Kelly, D. J. et al. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett. 18, 1168–1174 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Hu, S. et al. Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals. Nat. Nanotechnol. 13, 468–472 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. 18.

    Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  19. 19.

    Deveau, N. D., Ma, Y. H. & Datta, R. Beyond Sieverts’ law: a comprehensive microkinetic model of hydrogen permeation in dense metal membranes. J. Membr. Sci. 437, 298–311 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Wu, Q. et al. Selective surface functionalization at regions of high local curvature in graphene. Chem. Commun. 49, 677–679 (2013).

    Article  Google Scholar 

  21. 21.

    Bissett, M. A., Konabe, S., Okada, S., Tsuji, M. & Ago, H. Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7, 10335–10343 (2013).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Boukhvalov, D. W. & Katsnelson, M. I. Enhancement of chemical activity in corrugated graphene. J. Phys. Chem. C 113, 14176–14178 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    McKay, H., Wales, D. J., Jenkins, S. J., Verges, J. A. & de Andres, P. L. Hydrogen on graphene under stress: molecular dissociation and gap opening. Phys. Rev. B 81, 075425 (2010).

    ADS  Article  CAS  Google Scholar 

  24. 24.

    Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Geringer, V. et al. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Phys. Rev. Lett. 102, 076102 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  26. 26.

    Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  27. 27.

    Kroes, J. M. H., Fasolino, A. & Katsnelson, M. I. Density functional based simulations of proton permeation of graphene and hexagonal boron nitride. Phys. Chem. Chem. Phys. 19, 5813–5817 (2017).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Poltavsky, I., Zheng, L., Mortazavi, M. & Tkatchenko, A. Quantum tunneling of thermal protons through pristine graphene. J. Chem. Phys. 148, 204707 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  29. 29.

    Mazzuca, J. W. & Haut, N. K. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes. J. Chem. Phys. 148, 224301 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  30. 30.

    Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kunc, J., Rejhon, M. & Hlídek, P. Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy. AIP Adv. 8, 045015 (2018).

    ADS  Article  CAS  Google Scholar 

  32. 32.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  34. 34.

    Park, H. G. & Jung, Y. Carbon nanofluidics of rapid water transport for energy applications. Chem. Soc. Rev. 43, 565–576 (2014).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Whittaker, J. D., Minot, E. D., Tanenbaum, D. M., McEuen, P. L. & Davis, R. C. Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate. Nano Lett. 6, 953–957 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  36. 36.

    Hencky, H. Uber den spannungzustand in kreisrunden platten mit verschwindender biegungssteiflgeit. Z. Math. Phys. 63, 311–317 (1915).

    MATH  Google Scholar 

  37. 37.

    Wang, G. et al. Measuring interlayer shear stress in bilayer graphene. Phys. Rev. Lett. 119, 036101 (2017).

    ADS  PubMed  Article  Google Scholar 

  38. 38.

    Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics Vol. 5 Statistical Physics 3rd edn (Pergamon Press, 1980).

  39. 39.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Perdew, J. P., Burke, K. & Ernzerhof, M. M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Kerber, T., Sierka, M. & Sauer, J. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory. J. Comput. Chem. 29, 2088–2097 (2008).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  45. 45.

    Herzberg, G. & Monfils, A. The dissociation energies of the H2, HD, and D2 molecules. J. Mol. Spectrosc. 5, 482–498 (1961).

    ADS  Article  Google Scholar 

  46. 46.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS  CAS  MATH  Article  Google Scholar 

  47. 47.

    Hornekær, L. et al. Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97, 186102 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  48. 48.

    Paris, A. et al. Kinetic isotope effect in the hydrogenation and deuteration of graphene. Adv. Funct. Mater. 23, 1628–1635 (2013).

    ADS  CAS  Article  Google Scholar 

  49. 49.

    Bukola, S. & Creager, S. E. A charge-transfer resistance model and Arrhenius activation analysis for hydrogen ion transmission across single-layer graphene. Electrochim. Acta 296, 1–7 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lloyd’s Register Foundation, the European Research Council (grants ARTIMATTER and VANDER), Graphene Flagship and the Royal Society. S.J.Y. acknowledges support from the National Key R&D Program of China (grant 2018YFA0305800) and Supercomputing Center of Wuhan University.

Author information

Affiliations

Authors

Contributions

A.K.G. suggested and directed the project with help from P.Z.S., Q.Y. and F.C.W. P.Z.S., Q.Y., W.J.K. and Y.V.S. fabricated the devices, performed measurements and analysed the data. W.Q.X., J.Y., M.I.K., S.J.Y. and F.C.W. provided theoretical support. I.V.G., R.R.N, F.C.W. and M.L.-H. contributed to interpretation of the experimental results. A.K.G., P.Z.S., I.V.G. and M.L.-H. wrote the manuscript. All authors contributed to discussions.

Corresponding authors

Correspondence to S. J. Yuan or A. K. Geim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Rohit Karnik, Valentina Tozzini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Device fabrication.

a, Graphite or hBN monocrystals are obtained by mechanical exfoliation. Micrometre-size wells are then made by e-beam lithography and ion etching. Monolayer graphene is transferred on top to seal the wells. b, Optical micrograph of a set of hBN microcontainers. The dashed curve indicates the position of monolayer graphene.

Extended Data Fig. 2 Electron micrographs of our microcontainers.

a, A microcontainer with d = 0.5 μm. Such images were taken only after finishing measurements to avoid electron-beam damage. b, Example of a broken graphene seal: the membrane was damaged after a thermal cycle to 80 °C.

Extended Data Fig. 3 Stability of graphene membranes in air and helium.

a, Changes in δ(0) measured for two containers with d = 1 μm; AFM scans were taken every hour. b, Representative profiles δ(x) for a. c, Long-term variations in δ for 12 different containers kept in air. d, Permeation rates evaluated from the evolution of Δδ with time in c. e, Δδ for 16 different devices placed in helium at 3 bar. f, Permeation rates for the data in e. In c, e, different symbols denote different microcontainers made from graphite (empty symbols) and hBN (solid). The dashed lines in c, e indicate maximum changes detected for representative devices (colour coded). In d, f, the colour represents the same-colour device as in c, e, respectively. Error bars are standard deviation for fitting δ with a linear time dependence. Grey areas are the overall statistical accuracy obtained using all our devices measured in air and helium at 3 bar.

Extended Data Fig. 4 Bilayer graphene and monolayer MoS2 are impermeable to hydrogen.

a, AFM micrographs of the same container sealed with bilayer graphene before (left) and after (right) its exposure to molecular hydrogen at 1 bar at 50 °C for 3 d. White curves show the profiles along the membrane’s diameter. No changes in membrane positions could be detected within our experimental accuracy. b, Same experiment for monolayer MoS2. No changes could be noticed either. c, For comparison, we show the simultaneous experiment for a microcontainer covered with monolayer graphene. The membrane clearly bulged out after the exposure, similar to the case of Fig. 2a. All scale bars, 1 μm. After the experiment, the bulging membrane in c was kept under ambient conditions and found to slowly deflate over months, in agreement with the room-temperature permeation rates reported in the main text.

Extended Data Fig. 5 Pressure dependence of hydrogen permeation.

Symbols are measurements at room temperature. Error bars are standard deviation using a minimum of ten devices in each case. Solid curve is the best fit to the square-root dependence.

Extended Data Fig. 6 Dissociation of molecular hydrogen at graphene ripples.

a, b, Reaction of molecular hydrogen with graphene for t/D = 7.5% if adatoms are adsorbed in the central (a) and bridge (b) positions. Insets: atomic configurations of the initial, maximum-energy and final states (marked by the orange dots). The simulated size D is 2–3 nm. c, The dissociation barrier as a function of ripples’ curvature. Insets show top view of the bridge and central positions for hydrogen adatoms. d, The dissociation energy barrier as a function of biaxial strain. The inset shows schematic showing the direction of applied strain in our simulations.

Extended Data Fig. 7 Intrinsic (dynamic) ripples in graphene at different temperatures.

a, Typical snapshot of graphene membrane at 300 K using molecular dynamics simulations. b, Density of ripples with t/D ≥ 7% (most chemically active). Symbols are the calculations for different T. Solid curve is a guide to the eye. c, Statistical distribution of intrinsic ripples with different t/D.

Extended Data Fig. 8 Isotope effect.

Time evolution of Δδ for ten different devices (different colours) exposed to deuterium at 1 bar at room temperature (295 ± 2 K). All the devices are hBN containers sealed with monolayer graphene. The dashed lines indicate maximum changes detected for the device coded with the same colour. The random fluctuations are close in amplitude to those shown in Fig. 1e for helium.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, P.Z., Yang, Q., Kuang, W.J. et al. Limits on gas impermeability of graphene. Nature 579, 229–232 (2020). https://doi.org/10.1038/s41586-020-2070-x

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing