Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-particle spectroscopy for functional nanomaterials

Abstract

Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Correlative methods providing deterministic information about a single nanoparticle.
Fig. 2: Optical uniformity of nanoparticles advances biological and nanophotonics applications.
Fig. 3: Application of external fields to stimulate the response of single nanoparticles dynamically.
Fig. 4: Perspective for advanced SPS.

References

  1. 1.

    Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  2. 2.

    Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    ADS  CAS  Google Scholar 

  3. 3.

    Ropp, C. et al. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nat. Commun. 4, 1447 (2013).

    ADS  Google Scholar 

  4. 4.

    Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotechnol. 8, 175–179 (2013). This work demonstrated the deterministic trapping and three-dimensional manipulation of single nanodiamonds using optical tweezers.

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photon. 3, 144–147 (2009).

    ADS  CAS  Google Scholar 

  6. 6.

    Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017). This work developed the upconversion-stimulated emission depletion technique to resolve adjacent small particles with a resolution of 28 nm.

    ADS  CAS  Google Scholar 

  8. 8.

    Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    ADS  CAS  Google Scholar 

  9. 9.

    Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    ADS  CAS  Google Scholar 

  10. 10.

    Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    ADS  CAS  Google Scholar 

  11. 11.

    Chen, O. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013). This was the first report of the synthesis of high-quality CdSe/CdS core–shell nanocrystals with suppressed blinking in an optimized process that maintained a slow growth rate of the shell.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Chang, Y.-R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008).

    CAS  Google Scholar 

  13. 13.

    Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345–349 (2010).

    ADS  CAS  Google Scholar 

  14. 14.

    Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011). This work first revealed that two types of blinking co-exist in CdSe/CdS nanocrystals, using single-particle measurements with an electric-field stimulus.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011).

    ADS  CAS  Google Scholar 

  16. 16.

    Zhang, Q., Li, Y. L. & Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    ADS  CAS  Google Scholar 

  18. 18.

    Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Tatebayashi, J. et al. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photon. 9, 501–505 (2015).

    ADS  CAS  Google Scholar 

  20. 20.

    Wöll, D. & Flors, C. Super-resolution fluorescence imaging for materials science. Small Methods 1, 1700191 (2017).

    Google Scholar 

  21. 21.

    Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).

    CAS  Google Scholar 

  22. 22.

    Himmelstoß, S. F. & Hirsch, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl. Fluoresc. 7, 022002 (2019).

    ADS  Google Scholar 

  23. 23.

    Akkerman, Q. A., Raino, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    ADS  CAS  Google Scholar 

  24. 24.

    Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    ADS  CAS  Google Scholar 

  25. 25.

    Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    ADS  CAS  Google Scholar 

  26. 26.

    Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    ADS  CAS  Google Scholar 

  27. 27.

    Nirmal, M., Dabbousi, B. O., Bawendi, M. G. & Macklin, J. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802 (1996).

    ADS  CAS  Google Scholar 

  28. 28.

    Galland, C. et al. Lifetime blinking in nonblinking nanocrystal quantum dots. Nat. Commun. 3, 908 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    ADS  CAS  Google Scholar 

  30. 30.

    Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    CAS  Google Scholar 

  31. 31.

    Hadar, I., Hitin, G. B., Sitt, A., Faust, A. & Banin, U. Polarization properties of semiconductor nanorod heterostructures: from single particles to the ensemble. J. Phys. Chem. Lett. 4, 502–507 (2013).

    CAS  Google Scholar 

  32. 32.

    Ebenstein, Y., Mokari, T. & Banin, U. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl. Phys. Lett. 80, 4033–4035 (2002).

    ADS  CAS  Google Scholar 

  33. 33.

    Orfield, N. J. et al. Quantum yield heterogeneity among single nonblinking quantum dots revealed by atomic structure-quantum optics correlation. ACS Nano 10, 1960–1968 (2016).

    CAS  Google Scholar 

  34. 34.

    Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017). This study demonstrated that strain-optimized quantum dots with narrow emission linewidth can achieve continuous-wave lasing under a low pumping threshold.

    ADS  CAS  Google Scholar 

  35. 35.

    Beveratos, A., Brouri, R., Gacoin, T., Poizat, J.-P. & Grangier, P. Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64, 061802 (2001).

    ADS  Google Scholar 

  36. 36.

    Vlasov, I. I. et al. Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2014).

    ADS  CAS  Google Scholar 

  37. 37.

    Zeng, X. et al. Visualization of intra-neuronal motor protein transport through upconversion microscopy. Angew. Chem. Int. Ed. 58, 9262–9268 (2019).

    CAS  Google Scholar 

  38. 38.

    Haziza, S. et al. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol. 12, 322–328 (2017). This work experimentally demonstrated the advantage of using photostable nanodiamond to perform long-term single-particle tracking.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009). This paper reported non-blinking and non-bleaching fluorescence from single lanthanide-doped nanocrystals.

    ADS  CAS  Google Scholar 

  41. 41.

    Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nat. Photon. 12, 548–553 (2018). This work developed a type of UCNP with uniform and bright emissions at low-power irradiance.

    ADS  CAS  Google Scholar 

  42. 42.

    Park, Y. I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009).

    CAS  Google Scholar 

  43. 43.

    Ma, C. et al. Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 17, 2858–2864 (2017).

    ADS  CAS  Google Scholar 

  44. 44.

    Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).

    ADS  CAS  Google Scholar 

  45. 45.

    Zhou, J., Xu, S., Zhang, J. & Qiu, J. Upconversion luminescence behavior of single nanoparticles. Nanoscale 7, 15026–15036 (2015).

    ADS  CAS  Google Scholar 

  46. 46.

    Farka, Z., Mickert, M. J., Hlavacek, A., Skladal, P. & Gorris, H. H. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal. Chem. 89, 11825–11830 (2017).

    CAS  Google Scholar 

  47. 47.

    Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014). This paper first reported the controllable growth of a library of lifetime poly-dispersed UCNPs for optical multiplexing.

    ADS  CAS  Google Scholar 

  48. 48.

    Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    ADS  CAS  Google Scholar 

  49. 49.

    Ghosh, S. et al. Photoluminescence of carbon nanodots: dipole emission centers and electron-phonon coupling. Nano Lett. 14, 5656–5661 (2014).

    ADS  CAS  Google Scholar 

  50. 50.

    Chizhik, A. M. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 16, 237–242 (2016).

    ADS  CAS  Google Scholar 

  51. 51.

    Khan, S. et al. Charge-driven fluorescence blinking in carbon nanodots. J. Phys. Chem. Lett. 8, 5751–5757 (2017).

    CAS  Google Scholar 

  52. 52.

    Tian, Y. et al. Giant photoluminescence blinking of perovskite nanocrystals reveals single-trap control of luminescence. Nano Lett. 15, 1603–1608 (2015).

    ADS  CAS  Google Scholar 

  53. 53.

    Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    ADS  CAS  Google Scholar 

  54. 54.

    Hu, F. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015).

    CAS  Google Scholar 

  55. 55.

    Park, Y. S., Guo, S., Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015).

    CAS  Google Scholar 

  56. 56.

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    ADS  CAS  Google Scholar 

  57. 57.

    Rendler, T. et al. Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nat. Commun. 8, 14701 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tessier, M. D., Javaux, C., Maksimovic, I., Loriette, V. & Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 6, 6751–6758 (2012).

    CAS  Google Scholar 

  59. 59.

    Labeau, O., Tamarat, P. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).

    ADS  Google Scholar 

  60. 60.

    Rainò, G. et al. Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 10, 2485–2490 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Javaux, C. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nat. Nanotechnol. 8, 206–212 (2013).

    ADS  CAS  Google Scholar 

  62. 62.

    Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    ADS  CAS  Google Scholar 

  63. 63.

    Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    ADS  CAS  Google Scholar 

  64. 64.

    Canneson, D. et al. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 17, 6177–6183 (2017).

    ADS  CAS  Google Scholar 

  65. 65.

    Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019). This paper reported the direct spectroscopic signature of dark exciton emission from single lead bromide perovskite nanocrystals at cryogenic temperatures and under magnetic fields.

    ADS  CAS  Google Scholar 

  66. 66.

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    ADS  CAS  Google Scholar 

  67. 67.

    Neukirch, L. P., von Haartman, E., Rosenholm, J. M. & Nick Vamivakas, A. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photon. 9, 653–657 (2015).

    ADS  CAS  Google Scholar 

  68. 68.

    Park, K., Deutsch, Z., Li, J. J., Oron, D. & Weiss, S. Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 6, 10013–10023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Marshall, J. D. & Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 7, 4601–4609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Park, K. et al. Membrane insertion of-and membrane potential sensing by-semiconductor voltage nanosensors: feasibility demonstration. Sci. Adv. 4, e1601453 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Wen, S. et al. Future and challenges for hybrid upconversion nanosystems. Nat. Photon. 13, 828–838 (2019).

    ADS  CAS  Google Scholar 

  72. 72.

    Sun, M. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 10, 821–830 (2018).

    CAS  Google Scholar 

  73. 73.

    Tan, C., Chen, J., Wu, X.-J. & Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 3, 17089 (2018).

    ADS  CAS  Google Scholar 

  74. 74.

    Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 4, 201–224 (2019).

    ADS  CAS  Google Scholar 

  75. 75.

    Ji, B. et al. Strain-controlled shell morphology on quantum rods. Nat. Commun. 10, 2 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Đorđević, L. et al. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun. 9, 3442 (2018).

    ADS  Google Scholar 

  77. 77.

    Liu, W. et al. Fluorescent nanodiamond-gold hybrid particles for multimodal optical and electron microscopy cellular imaging. Nano Lett. 16, 6236–6244 (2016).

    ADS  CAS  Google Scholar 

  78. 78.

    Li, X., Zhao, D. & Zhang, F. Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications. Theranostics 3, 292–305 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Kianinia, M. et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun. 9, 874 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Oracz, J. et al. Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature. Nano Lett. 17, 2652–2659 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Chen, C. et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 9, 3290 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Fischer, S., Swabeck, J. K. & Alivisatos, A. P. Controlled isotropic and anisotropic shell growth in β-NaLnF4 nanocrystals induced by precursor injection rate. J. Am. Chem. Soc. 139, 12325–12332 (2017).

    CAS  Google Scholar 

  83. 83.

    Zhuo, Z. et al. Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence. Chem. Sci. 8, 5050–5056 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Liu, D. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 7, 10254 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Zhang, Y. et al. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136, 4893–4896 (2014).

    CAS  Google Scholar 

  86. 86.

    Yang, X. et al. Mirror-enhanced super-resolution microscopy. Light Sci. Appl. 5, e16134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Chizhik, A. I., Rother, J., Gregor, I., Janshoff, A. & Enderlein, J. Metal-induced energy transfer for live cell nanoscopy. Nat. Photon. 8, 124 (2014).

    ADS  CAS  Google Scholar 

  88. 88.

    Prigozhin, M. B. et al. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat. Nanotechnol. 14, 420–425 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Watanabe, T. M., Fukui, S., Jin, T., Fujii, F. & Yanagida, T. Real-time nanoscopy by using blinking enhanced quantum dots. Biophys. J. 99, L50–L52 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Yang, X. et al. Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photonics 3, 1611–1618 (2016).

    CAS  Google Scholar 

  91. 91.

    Taylor, R. W. et al. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photon. 13, 480–487 (2019).

    ADS  CAS  Google Scholar 

  92. 92.

    Zhanghao, K. et al. Super-resolution dipole orientation mapping via polarization demodulation. Light Sci. Appl. 5, e16166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Wang, M. et al. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information. Nanoscale 10, 19757–19765 (2018).

    CAS  Google Scholar 

  94. 94.

    Khan, S. et al. Small molecular organic nanocrystals resemble carbon nanodots in terms of their properties. Chem. Sci. 9, 175–180 (2018).

    CAS  Google Scholar 

  95. 95.

    Chizhik, A. M. et al. Imaging and spectroscopy of defect luminescence and electron–phonon coupling in single SiO2 nanoparticles. Nano Lett. 9, 3239–3244 (2009).

    ADS  CAS  Google Scholar 

  96. 96.

    Tarpani, L. et al. Photoactivation of luminescent centers in single SiO2 nanoparticles. Nano Lett. 16, 4312–4316 (2016).

    ADS  CAS  Google Scholar 

  97. 97.

    Chizhik, A. I. et al. Measurement of vibrational modes in single SiO2 nanoparticles using a tunable metal resonator with optical subwavelength dimensions. Phys. Rev. Lett. 109, 223902 (2012).

    ADS  Google Scholar 

  98. 98.

    Chu, S. Nobel lecture: the manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    ADS  CAS  Google Scholar 

  99. 99.

    Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807–819 (2013).

    ADS  Google Scholar 

  100. 100.

    Lin, L. et al. Opto-thermoelectric nanotweezers. Nat. Photon. 12, 195–201 (2018).

    ADS  CAS  Google Scholar 

  101. 101.

    Crozier, K. B. Quo vadis, plasmonic optical tweezers? Light Sci. Appl. 8, 35 (2019).

    Google Scholar 

  102. 102.

    Xin, H. et al. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small 13, 1603418 (2017).

    Google Scholar 

  103. 103.

    Ndukaife, J. C. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol. 11, 53–59 (2016).

    ADS  CAS  Google Scholar 

  104. 104.

    Berthelot, J. et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 9, 295–299 (2014).

    ADS  CAS  Google Scholar 

  105. 105.

    Trichet, A. et al. Nanoparticle trapping and characterization using open microcavities. Nano Lett. 16, 6172–6177 (2016).

    ADS  CAS  Google Scholar 

  106. 106.

    Cohen, A. E. Control of nanoparticles with arbitrary two-dimensional force fields. Phys. Rev. Lett. 94, 118102 (2005).

    ADS  Google Scholar 

  107. 107.

    Cohen, A. E. & Moerner, W. E. Method for trapping and manipulating nanoscale objects in solution. Appl. Phys. Lett. 86, 093109 (2005).

    ADS  Google Scholar 

  108. 108.

    Xiong, H. et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photon. 13, 412–417 (2019). This work developed an all-far-field single-molecule Raman spectroscopy and imaging technique.

    ADS  CAS  Google Scholar 

  109. 109.

    Ren, W. et al. Anisotropic functionalization of upconversion nanoparticles. Chem. Sci. 9, 4352–4358 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Imaging a single quantum dot when it is dark. Nano Lett. 9, 926–929 (2009).

    ADS  CAS  Google Scholar 

  111. 111.

    Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Photon. 5, 95 (2011); correction 12, 309 (2018).

    ADS  CAS  Google Scholar 

  112. 112.

    Streed, E. W., Jechow, A., Norton, B. G. & Kielpinski, D. Absorption imaging of a single atom. Nat. Commun. 3, 933 (2012).

    ADS  Google Scholar 

  113. 113.

    Heylman, K. D. et al. Optical microresonators as single-particle absorption spectrometers. Nat. Photon. 10, 788–795 (2016).

    ADS  CAS  Google Scholar 

  114. 114.

    Chien, M. H., Brameshuber, M., Rossboth, B. K., Schutz, G. J. & Schmid, S. Single-molecule optical absorption imaging by nanomechanical photothermal sensing. Proc. Natl Acad. Sci. USA 115, 11150–11155 (2018).

    ADS  CAS  Google Scholar 

  115. 115.

    Li, M. et al. Total internal reflection-based extinction spectroscopy of single nanoparticles. Angew. Chem. Int. Ed. 58, 572–576 (2019).

    CAS  Google Scholar 

  116. 116.

    Jensen, R. A. et al. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photonics 3, 423–427 (2016).

    CAS  Google Scholar 

  117. 117.

    Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    ADS  CAS  Google Scholar 

  118. 118.

    Brokmann, X., Coolen, L., Dahan, M. & Hermier, J. P. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett. 93, 107403 (2004).

    ADS  CAS  Google Scholar 

  119. 119.

    Macklin, J. J., Trautman, J. K., Harris, T. D. & Brus, L. E. Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272, 255–258 (1996).

    ADS  CAS  Google Scholar 

  120. 120.

    Ambrose, W. P., Goodwin, P. M., Keller, R. A. & Martin, J. C. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 265, 364–367 (1994).

    ADS  CAS  Google Scholar 

  121. 121.

    Buchler, B., Kalkbrenner, T., Hettich, C. & Sandoghdar, V. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett. 95, 063003 (2005).

    ADS  CAS  Google Scholar 

  122. 122.

    Holzmeister, P. et al. Quantum yield and excitation rate of single molecules close to metallic nanostructures. Nat. Commun. 5, 5356 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).

    ADS  CAS  Google Scholar 

  124. 124.

    Chizhik, A. I. et al. Probing the radiative transition of single molecules with a tunable microresonator. Nano Lett. 11, 1700–1703 (2011).

    ADS  CAS  Google Scholar 

  125. 125.

    Gonell, F. et al. Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. Nanoscale Adv. 1, 2537–2545 (2019).

    ADS  CAS  Google Scholar 

  126. 126.

    Zhang, Z., Kenny, S. J., Hauser, M., Li, W. & Xu, K. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nat. Methods 12, 935–938 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS  CAS  Google Scholar 

  128. 128.

    Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    ADS  CAS  Google Scholar 

  129. 129.

    Zhou, J., Huang, B., Yan, Z. & Bünzli, J.-C. G. Emerging role of machine learning in light-matter interaction. Light Sci. Appl. 8, 84 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Zhang, P. et al. Analyzing complex single-molecule emission patterns with deep learning. Nat. Methods 15, 913–916 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460–468 (2018).

    CAS  Google Scholar 

  132. 132.

    Tian, B. et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nat. Commun. 9, 3082 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Australian Research Council (ARC) Discovery Early Career Researcher Award Scheme (DE180100669), Shenzhen Science and Technology Program (KQTD20170810110913065) and Australia China Science and Research Fund Joint Research Centre for POCT (ACSRF65827).

Author information

Affiliations

Authors

Contributions

All authors developed the scope and focus of the Review and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Jiajia Zhou, Alexey I. Chizhik, Steven Chu or Dayong Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Chizhik, A.I., Chu, S. et al. Single-particle spectroscopy for functional nanomaterials. Nature 579, 41–50 (2020). https://doi.org/10.1038/s41586-020-2048-8

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing