Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intraplate volcanism originating from upwelling hydrous mantle transition zone

Abstract

Most magmatism occurring on Earth is conventionally attributed to passive mantle upwelling at mid-ocean ridges, to slab devolatilization at subduction zones, or to mantle plumes. However, the widespread Cenozoic intraplate volcanism in northeast China1,2,3 and the young petit-spot volcanoes4,5,6,7 offshore of the Japan Trench cannot readily be associated with any of these mechanisms. In addition, the mantle beneath these types of volcanism is characterized by zones of anomalously low seismic velocity above and below the transition zone8,9,10,11,12 (a mantle level located at depths between 410 and 660 kilometres). A comprehensive interpretation of these phenomena is lacking. Here we show that most (or possibly all) of the intraplate and petit-spot volcanism and low-velocity zones around the Japanese subduction zone can be explained by the Cenozoic interaction of the subducting Pacific slab with a hydrous mantle transition zone. Numerical modelling indicates that 0.2 to 0.3 weight per cent of water dissolved in mantle minerals that are driven out from the transition zone in response to subduction and retreat of a tectonic plate is sufficient to reproduce the observations. This suggests that a critical amount of water may have accumulated in the transition zone around this subduction zone, as well as in others of the Tethyan tectonic belt13 that are characterized by intraplate or petit-spot volcanism and low-velocity zones in the underlying mantle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Geological/geophysical maps and Cenozoic volcanic fields in northeast China and offshore Japan.
Fig. 2: Dynamics of subduction-induced dehydration melting above and below the mantle transition zone.
Fig. 3: Volume of volcanics versus time.

Data availability

The dataset generated during the current study is available at https://figshare.com/articles/Yang_Faccenda_Nature2019/9933056.

Code availability

Requests about the numerical modelling codes associated with this paper should be sent to the main code developer (taras.gerya@erdw.ethz.ch). The map in Fig. 1a is created with open software GMT 5.4.3 which is under a GNU Lesser General Public License. The numerical 2D finite element code MVEP2 (https://bitbucket.org/bkaus/mvep2) was used for the two-phase flow model in Extended Data Fig. 6.

References

  1. 1.

    Chen, Y., Zhang, Y., Graham, D., Su, S. & Deng, J. Geochemistry of Cenozoic basalts and mantle xenoliths in northeast China. Lithos 96, 108–126 (2007).

    ADS  CAS  Google Scholar 

  2. 2.

    Wang, X.-C., Wilde, S. A., Li, Q.-L. & Yang, Y.-N. Continental flood basalts derived from the hydrous mantle transition zone. Nat. Commun. 6, 7700 (2015).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Chen, C. et al. Mantle transition zone, stagnant slab and intraplate volcanism in northeast Asia. Geophys. J. Int. 209, 68–85 (2017).

    ADS  Google Scholar 

  4. 4.

    Hirano, N. et al. Volcanism in response to plate flexure. Science 313, 1426–1428 (2006).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Okumura, S. & Hirano, N. Carbon dioxide emission to Earth’s surface by deep-sea volcanism. Geology 41, 1167–1170 (2013).

    ADS  CAS  Google Scholar 

  6. 6.

    Machida, S. et al. Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere. Earth Planet. Sci. Lett. 426, 267–279 (2015).

    ADS  CAS  Google Scholar 

  7. 7.

    Pilet, S. et al. Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure. Nat. Geosci. 9, 898–903 (2016).

    ADS  CAS  Google Scholar 

  8. 8.

    Li, C., Van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).

    ADS  CAS  Google Scholar 

  9. 9.

    Tauzin, B., Debayle, E. & Wittlinger, G. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nat. Geosci. 3, 718–721 (2010).

    ADS  CAS  Google Scholar 

  10. 10.

    Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).

    ADS  Google Scholar 

  11. 11.

    Liu, Z., Park, J. & Karato, S.-i. Seismological detection of low velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys. Res. Lett. 43, 2480–2487 (2016).

    ADS  Google Scholar 

  12. 12.

    Wei, S. S. & Shearer, P. M. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean. J. Geophys. Res. Solid Earth 122, 5144–5159 (2017).

    ADS  Google Scholar 

  13. 13.

    Lustrino, M. & Wilson, M. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci. Rev. 81, 1–65 (2007).

    ADS  Google Scholar 

  14. 14.

    Tang, Y. et al. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nat. Geosci. 7, 470–475 (2014).

    ADS  CAS  Google Scholar 

  15. 15.

    Zhao, D., Tian, Y., Lei, J., Liu, L. & Zheng, S. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 173, 197–206 (2009).

    ADS  Google Scholar 

  16. 16.

    Karato, S.-i. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011).

    ADS  CAS  Google Scholar 

  17. 17.

    Kelbert, A., Schultz, A. & Egbert, G. Global electromagnetic induction constraints on transition-zone water content variations. Nature 460, 1003–1006 (2009).

    ADS  CAS  PubMed  Google Scholar 

  18. 18.

    Bercovici, D. & Karato, S.-i. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003).

    ADS  CAS  PubMed  Google Scholar 

  19. 19.

    Liu, Z., Park, J. & Karato, S.-i. Seismic evidence for water transport out of the mantle transition zone beneath the European Alps. Earth Planet. Sci. Lett. 482, 93–104 (2018).

    ADS  CAS  Google Scholar 

  20. 20.

    Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Hier-Majumder, S. & Tauzin, B. Pervasive upper mantle melting beneath the western US. Earth Planet. Sci. Lett. 463, 25–35 (2017).

    ADS  CAS  Google Scholar 

  22. 22.

    Mao, Z. et al. Elasticity of hydrous wadsleyite to 12 GPa: implications for Earth’s transition zone. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL035618 (2008).

  23. 23.

    Irifune, T. et al. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451, 814–817 (2008).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Bezada, M., Faccenda, M. & Toomey, D. Representing anisotropic subduction zones with isotropic velocity models: a characterization of the problem and some steps on a possible path forward. Geochem. Geophys. Geosyst. 17, 3164–3189 (2016).

    ADS  CAS  Google Scholar 

  25. 25.

    Obayashi, M., Sugioka, H., Yoshimitsu, J. & Fukao, Y. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity. Earth Planet. Sci. Lett. 243, 149–158 (2006).

    ADS  CAS  Google Scholar 

  26. 26.

    Zhao, D. & Tian, Y. Changbai intraplate volcanism and deep earthquakes in East Asia: a possible link? Geophys. J. Int. 195, 706–724 (2013).

    Google Scholar 

  27. 27.

    Cline, C. J. II, Faul, U. H., David, E. C., Berry, A. J. & Jackson, I. Redox-influenced seismic properties of upper-mantle olivine. Nature 555, 355–358 (2018).

    ADS  Google Scholar 

  28. 28.

    Xu, W., Lithgow-Bertelloni, C., Stixrude, L. & Ritsema, J. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275, 70–79 (2008).

    ADS  CAS  Google Scholar 

  29. 29.

    Litasov, K. D., Shatskiy, A., Ohtani, E. & Yaxley, G. M. Solidus of alkaline carbonatite in the deep mantle. Geology 41, 79–82 (2013).

    ADS  CAS  Google Scholar 

  30. 30.

    Kuritani, T. et al. Buoyant hydrous mantle plume from the mantle transition zone. Sci. Rep. 9, 6549 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Green, H. W., II, Chen, W.-P. & Brudzinski, M. R. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature 467, 828–831 (2010).

    ADS  CAS  PubMed  Google Scholar 

  32. 32.

    Mazza, S. E. et al. Sampling the volatile-rich transition zone beneath Bermuda. Nature 569, 398–403 (2019).

    ADS  CAS  PubMed  Google Scholar 

  33. 33.

    Wang, X.-J. et al. Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet. Sci. Lett. 465, 16–28 (2017).

    ADS  CAS  Google Scholar 

  34. 34.

    Kuritani, T., Ohtani, E. & Kimura, J. I. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat. Geosci. 4, 713–716 (2011).

    ADS  CAS  Google Scholar 

  35. 35.

    Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472, 209–212 (2011).

    ADS  CAS  PubMed  Google Scholar 

  36. 36.

    Soltanmohammadi, A. et al. Transport of volatile-rich melt from the mantle transition zone via compaction pockets: implications for mantle metasomatism and the origin of alkaline lavas in the Turkish–Iranian plateau. J. Petrol. 59, 2273–2310 (2018).

    ADS  CAS  Google Scholar 

  37. 37.

    Gerya, T. V. & Yuen, D. A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 140, 293–318 (2003).

    ADS  Google Scholar 

  38. 38.

    Karato, S.-i. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    ADS  CAS  PubMed  Google Scholar 

  39. 39.

    Kameyama, M., Yuen, D. A. & Karato, S.-i. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet. Sci. Lett. 168, 159–172 (1999).

    ADS  CAS  Google Scholar 

  40. 40.

    Connolly, J. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    ADS  CAS  Google Scholar 

  41. 41.

    Litasov, K. Physicochemical conditions for melting in the Earth’s mantle containing a C–O–H fluid (from experimental data). Russ. Geol. Geophys. 52, 475–492 (2011).

    ADS  Google Scholar 

  42. 42.

    Andrault, D. et al. Melting of subducted basalt at the core-mantle boundary. Science 344, 892–895 (2014).

    ADS  CAS  PubMed  Google Scholar 

  43. 43.

    Zhang, J. & Herzberg, C. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. Solid Earth 99, 17729–17742 (1994).

    Google Scholar 

  44. 44.

    Nomura, R. et al. Low core–mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–525 (2014).

    ADS  CAS  PubMed  Google Scholar 

  45. 45.

    Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006).

    ADS  CAS  PubMed  Google Scholar 

  46. 46.

    Jing, Z. & Karato, S.-i. Effect of H2O on the density of silicate melts at high pressures: static experiments and the application of a modified hard-sphere model of equation of state. Geochim. Cosmochim. Acta 85, 357–372 (2012).

    ADS  CAS  Google Scholar 

  47. 47.

    Guillot, B. & Sator, N. A computer simulation study of natural silicate melts. Part II: High pressure properties. Geochim. Cosmochim. Acta 71, 4538–4556 (2007).

    ADS  CAS  Google Scholar 

  48. 48.

    Yoshino, T., Nishihara, Y. & Karato, S.-i. Complete wetting of olivine grain boundaries by a hydrous melt near the mantle transition zone. Earth Planet. Sci. Lett. 256, 466–472 (2007).

    ADS  CAS  Google Scholar 

  49. 49.

    Freitas, D. et al. Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle. Nat. Commun. 8, 2186 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sizova, E., Gerya, T., Brown, M. & Perchuk, L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    ADS  CAS  Google Scholar 

  51. 51.

    Keller, T., May, D. A. & Kaus, B. J. P. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int. 195, 1406–1442 (2013).

    ADS  Google Scholar 

  52. 52.

    Lehmann, R. Modelling of Magma Dynamics from the Mantle to the Surface (Universitätsbibliothek Mainz, 2016).

  53. 53.

    Iwamori, H. Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O. Earth Planet. Sci. Lett. 227, 57–71 (2004).

    ADS  CAS  Google Scholar 

  54. 54.

    van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. Solid Earth 116, https://doi.org/10.1029/2010JB007922 (2011).

  55. 55.

    Faccenda, M., Gerya, T. V. & Burlini, L. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790–793 (2009).

    ADS  CAS  Google Scholar 

  56. 56.

    Faccenda, M., Gerya, T. V., Mancktelow, N. S. & Moresi, L. Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochem. Geophys. Geosystems 13, Q01010 (2012).

  57. 57.

    Takei, Y. Effect of pore geometry on V p/V s: from equilibrium geometry to crack. J. Geophys. Res. Solid Earth 107, 2043 (2002).

    ADS  Google Scholar 

  58. 58.

    von Bargen, N. & Waff, H. S. Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J. Geophys. Res. Solid Earth 91, 9261–9276 (1986).

    Google Scholar 

  59. 59.

    Litasov, K. D. & Ohtani, E. Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys. Earth Planet. Inter. 150, 239–263 (2005).

    ADS  CAS  Google Scholar 

  60. 60.

    Pradhan, G. K. et al. Melting of MORB at core–mantle boundary. Earth Planet. Sci. Lett. 431, 247–255 (2015).

    ADS  CAS  Google Scholar 

  61. 61.

    Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    ADS  CAS  Google Scholar 

  62. 62.

    Andrault, D. et al. Deep and persistent melt layer in the Archaean mantle. Nat. Geosci. 11, 139–143 (2018).

    ADS  CAS  Google Scholar 

  63. 63.

    Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    ADS  CAS  PubMed  Google Scholar 

  64. 64.

    Boukaré, C. E., Ricard, Y. & Fiquet, G. Thermodynamics of the MgO–FeO–SiO2 system up to 140 GPa: application to the crystallization of Earth’s magma ocean. J. Geophys. Res. Solid Earth 120, 6085–6101 (2015).

    ADS  Google Scholar 

  65. 65.

    Baron, M. A. et al. Experimental constraints on melting temperatures in the MgO–SiO2 system at lower mantle pressures. Earth Planet. Sci. Lett. 472, 186–196 (2017).

    ADS  CAS  Google Scholar 

  66. 66.

    Walter, M. J. et al. The stability of hydrous silicates in Earth’s lower mantle: experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chem. Geol. 418, 16–29 (2015).

    ADS  CAS  Google Scholar 

  67. 67.

    Sanloup, C. et al. Structure and density of molten fayalite at high pressure. Geochim. Cosmochim. Acta 118, 118–128 (2013).

    ADS  CAS  Google Scholar 

  68. 68.

    Bajgain, S., Ghosh, D. B. & Karki, B. B. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat. Commun. 6, 8578 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Agee, C. B. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998).

    ADS  CAS  Google Scholar 

  70. 70.

    Petitgirard, S. et al. Fate of MgSiO3 melts at core–mantle boundary conditions. Proc. Natl Acad. Sci. USA 112, 14186–14190 (2015).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T. Gerya provided the I2VIS code. We acknowledge discussions with A. Marzoli, C. Meyzen, P. Nimis, D. Novella, M. Lustrino, K. Litasov, S.-i. Karato and X. Xu. J.Y. was financially supported by Dipartimento di Geoscienze, Università di Padova. M.F. acknowledges the European Research Council Starting Grant 758199.

Author information

Affiliations

Authors

Contributions

M.F. conceived the study. J.Y. performed all the numerical experiments and wrote the first draft of the paper. Both authors contributed equally to the discussion of the results and to the conclusions of this study.

Corresponding author

Correspondence to Manuele Faccenda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Esteban Gazel, Dapeng Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Solidus and liquidus of basalt and mantle.

a, The solidus and liquidus of basalt are obtained from experimental data42,59,60. The solidus from ref. 60 fits well within the uncertainty region of ref. 42 and is thus adopted. b, Solidus and/or liquidus of mantle collected from literature. Sol, solidus; Liq, liquidus; BrPe, MgSiO3–MgO (bridgmanite + periclase); Fiqul, MgSiO3–SiO2 (bridgmanite + stishovite). Experimental data are from refs. 41,44,61,62,63,64,65,66.

Extended Data Fig. 2 Melt density of basalt and mantle for different temperatures and/or water contents.

a, Basalt. PREM, density profile from Preliminary Reference Earth Model; dry melt density at temperatures of 1,673 K, 2,073 K and 2,473 K (ref. 47) and 2,735 K (ref. 67); dry and wet with 2 wt% and 8 wt% H2O melt density at 2,473 K (ref. 45); the modelled basalt (MB), hydrated basalt (hyMB) and basalt (MORB)68. b, Mantle. Melt density of dry peridotite47; dry and wet (2 wt% and 8 wt% H2O)45; wet peridotite (3 wt%, 5 wt%, 7 wt% H2O)46; dry peridotite and komatiite69 and perovskite (pv)70. Note the density crossover at around 13 GPa (refs. 45,46). All the profiles are fitted by third or fourth order of the Birch–Murnaghan equation of state.

Extended Data Fig. 3 Phase diagram of H2O-peridotite, after ref.

53. The solidus/liquidus curves are the same as in Extended Data Fig. 1. The grey lines are olivine–wadsleyite (Ol–Wd) and ringwoodite–perovskite (Rd–Pv) phase boundaries. The abbreviations of major hydrous phases are as follows: Chl, chlorite; Serp, serpentine; A, phase A; E, phase E; shyB, superhydrous phase B; D, phase D.

Extended Data Fig. 4 Falling block simulations with different parameters.

a, Reference model with initial MTZ water content of 0.3 wt%, melt density from ref. 45 and reference extraction timescale tref = 6 kyr. bf, Other tests are similar to this model except for (b) initial water content Cw = 0.2 wt%, (c) extraction timescale tref = 4 kyr, (d) tref = 8 kyr, (e) Cw = 0.2 wt% and tref = 15 kyr, (f) Cw = 0.3 wt% and tref = 4 kyr by using the melt density from ref. 47. Note that the extraction timescale is calculated only when the melt is less dense than the solid matrix.

Extended Data Fig. 5 Additional parameter tests.

a, b, Extraction timescales of 4 kyr (a) and 8 kyr (b), with 0.3 wt% initial water content in both. c, Initial water content 0.2 wt%. d, Melt density from ref. 47 and tref = 4 kyr. e, Wet inclusions in the transition zone with tref = 6 kyr. Note that all the models differ by only one parameter from the reference model (Fig. 2), except d.

Extended Data Fig. 6 Visco-plastic shear viscosity for melt percolation in two-phase flow.

ac, Melt percolation at three typical stages as (a), diapirism (b), channelling and (c), dyking from deep mantle to the surface. The numerical 2D finite element code MVEP2 was used to simulate melt migration dynamics. A small background strain rate (10−15 s−1; the model domain was extended by only 0.75 km after 12.2 kyr) was applied at the side boundaries. The top boundary is free surface. An initial porosity at the bottom boundary with Gaussian distribution (resulting in an average porosity of 0.127) was applied. The details of the approach allowing for its reproduction are provided elsewhere51,52.

Extended Data Fig. 7 Normalized bulk modulus Kb/k and shear modulus N/μ of skeleton (solid porous matrix) versus melt fraction.

The ratios of both bulk and shear modulus decrease with melt fraction. The numbers shown on the lines are dihedral angles.

Extended Data Table 1 Physical properties of rocks used in this study

Supplementary information

Video 1

Evolution of the reference model in Figs. 2, 3. The top panel shows compositional field and the bottom panel shows water content (in wt. %; the thick grey curves are isotherms in ºC). The horizontal black lines are traced at 410 km and 660 km depth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Faccenda, M. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature 579, 88–91 (2020). https://doi.org/10.1038/s41586-020-2045-y

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing