Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A simple dynamic model explains the diversity of island birds worldwide

Abstract

Colonization, speciation and extinction are dynamic processes that influence global patterns of species richness1,2,3,4,5,6. Island biogeography theory predicts that the contribution of these processes to the accumulation of species diversity depends on the area and isolation of the island7,8. Notably, there has been no robust global test of this prediction for islands where speciation cannot be ignored9, because neither the appropriate data nor the analytical tools have been available. Here we address both deficiencies to reveal, for island birds, the empirical shape of the general relationships that determine how colonization, extinction and speciation rates co-vary with the area and isolation of islands. We compiled a global molecular phylogenetic dataset of birds on islands, based on the terrestrial avifaunas of 41 oceanic archipelagos worldwide (including 596 avian taxa), and applied a new analysis method to estimate the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation). Our model predicts—with high explanatory power—several global relationships. We found a decline in colonization with isolation, a decline in extinction with area and an increase in speciation with area and isolation. Combining the theoretical foundations of island biogeography7,8 with the temporal information contained in molecular phylogenies10 proves a powerful approach to reveal the fundamental relationships that govern variation in biodiversity across the planet.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Archipelago and island bird colonization time data.
Fig. 2: Estimated relationships between island area and isolation, and local island biogeography parameters.
Fig. 3: Goodness of fit of the preferred model (M19).
Fig. 4: Observed and predicted island diversity–area and island diversity–distance relationships.

Data availability

New sequence data produced for this study have been deposited in GenBank with the accession codes: MH307408–MH307656. The following datasets have been deposited in Mendeley: DNA alignments (https://doi.org/10.17632/vf95364vx6.1), new phylogenetic trees produced for this study (https://doi.org/10.17632/p6hm5w8s3b.2), and DAISIE R objects (https://doi.org/10.17632/sy58zbv3s2.2). The 11 previously published trees are available upon request.

Code availability

The custom computer code used for this study is freely available in the DAISIE R package (https://github.com/rsetienne/DAISIE).

References

  1. Ricklefs, R. E. & Bermingham, E. Nonequilibrium diversity dynamics of the Lesser Antillean avifauna. Science 294, 1522–1524 (2001).

    ADS  CAS  PubMed  Google Scholar 

  2. Triantis, K. A., Economo, E. P., Guilhaumon, F. & Ricklefs, R. E. Diversity regulation at macro-scales: species richness on oceanic archipelagos. Glob. Ecol. Biogeogr. 24, 594–605 (2015).

    Google Scholar 

  3. Whittaker, R. J., Triantis, K. A. & Ladle, R. J. A general dynamic theory of oceanic island biogeography. J. Biogeogr. 35, 977–994 (2008).

    Google Scholar 

  4. Kreft, H., Jetz, W., Mutke, J., Kier, G. & Barthlott, W. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 11, 116–127 (2008).

    PubMed  Google Scholar 

  5. Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847–850 (2000).

    ADS  CAS  PubMed  Google Scholar 

  6. Gillespie, R. G. & Baldwin, B. G. in The Theory of Island Biogeography Revisited (eds Losos, J. & Ricklefs, R. E.) 358–387 (Princeton Univ. Press, 2010).

  7. MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).

    Google Scholar 

  8. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  9. Warren, B. H. et al. Islands as model systems in ecology and evolution: prospects fifty years after MacArthur–Wilson. Ecol. Lett. 18, 200–217 (2015).

    PubMed  Google Scholar 

  10. Valente, L. M., Phillimore, A. B. & Etienne, R. S. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands. Ecol. Lett. 18, 844–852 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Lomolino, M. V. Species–area and species–distance relationships of terrestrial mammals in the Thousand Island Region. Oecologia 54, 72–75 (1982).

    ADS  PubMed  Google Scholar 

  12. Diamond, J. M. Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest Pacific islands. Proc. Natl Acad. Sci. USA 69, 3199–3203 (1972).

    ADS  CAS  PubMed  Google Scholar 

  13. Whittaker, R. J. & Fernandez-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford Univ. Press, 2007).

  14. Matthews, T. J., Rigal, F., Triantis, K. A. & Whittaker, R. J. A global model of island species–area relationships. Proc. Natl Acad. Sci. USA 116, 12337–12342 (2019).

    CAS  PubMed  Google Scholar 

  15. Weigelt, P., Steinbauer, M. J., Cabral, J. S. & Kreft, H. Late Quaternary climate change shapes island biodiversity. Nature 532, 99–102 (2016).

    ADS  CAS  PubMed  Google Scholar 

  16. Lim, J. Y. & Marshall, C. R. The true tempo of evolutionary radiation and decline revealed on the Hawaiian archipelago. Nature 543, 710–713 (2017).

    ADS  CAS  PubMed  Google Scholar 

  17. Cabral, J. S., Weigelt, P., Kissling, W. D. & Kreft, H. Biogeographic, climatic and spatial drivers differentially affect α-, β- and γ-diversities on oceanic archipelagos. Proc. R. Soc. B 281, 20133246 (2014).

    PubMed  Google Scholar 

  18. Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. On the form of species–area relationships in habitat islands and true islands. Glob. Ecol. Biogeogr. 25, 847–858 (2016).

    Google Scholar 

  19. Simberloff, D. S. & Wilson, E. O. Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296 (1969).

    Google Scholar 

  20. Russell, G. J., Diamond, J. M., Reed, T. M. & Pimm, S. L. Breeding birds on small islands: island biogeography or optimal foraging? J. Anim. Ecol. 75, 324–339 (2006).

    PubMed  Google Scholar 

  21. Rabosky, D. L. & Glor, R. E. Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proc. Natl Acad. Sci. USA 107, 22178–22183 (2010).

    ADS  CAS  PubMed  Google Scholar 

  22. Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).

    PubMed  Google Scholar 

  23. Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).

    PubMed  Google Scholar 

  24. Triantis, K., Whittaker, R. J., Fernández-Palacios, J. M. & Geist, D. J. Oceanic archipelagos: a perspective on the geodynamics and biogeography of the World’s smallest biotic provinces. Front. Biogeogr. 8, e29605 (2016).

    Google Scholar 

  25. Santos, A. M. C. et al. Are species–area relationships from entire archipelagos congruent with those of their constituent islands? Glob. Ecol. Biogeogr. 19, 527–540 (2010).

    Google Scholar 

  26. Ricklefs, R. E. & Lovette, I. J. The roles of island area per se and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160 (1999).

    Google Scholar 

  27. Rosindell, J. & Phillimore, A. B. A unified model of island biogeography sheds light on the zone of radiation. Ecol. Lett. 14, 552–560 (2011).

    PubMed  Google Scholar 

  28. Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).

    ADS  CAS  PubMed  Google Scholar 

  29. Keil, P. et al. Spatial scaling of extinction rates: theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Glob. Ecol. Biogeogr. 27, 2–13 (2016).

    Google Scholar 

  30. Wilcox, B. A. & Murphy, D. D. Conservation strategy: the effects of fragmentation on extinction. Am. Nat. 125, 879–887 (1985).

    Google Scholar 

  31. Plummer, P. S. & Belle, E. R. Mesozoic tectono-stratigraphic evolution of the Seychelles microcontinent. Sediment. Geol. 96, 73–91 (1995).

    ADS  Google Scholar 

  32. Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. USA 110, 15307–15312 (2013).

    ADS  CAS  PubMed  Google Scholar 

  33. Norder, S. J. et al. Beyond the Last Glacial Maximum: island endemism is best explained by long–lasting archipelago configurations. Glob. Ecol. Biogeogr. 28, 184–197 (2019).

    Google Scholar 

  34. Thomson, J. & Walton, A. Redetermination of chronology of Aldabra atoll by 230Th/234U dating. Nature 240, 145–146 (1972).

    ADS  CAS  Google Scholar 

  35. Price, J. P. & Clague, D. A. How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence. Proc. R. Soc. B 269, 2429–2435 (2002).

    PubMed  Google Scholar 

  36. Valente, L. et al. Equilibrium bird species diversity in Atlantic islands. Curr. Biol. 27, 1660–1666 (2017).

    CAS  PubMed  Google Scholar 

  37. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. (eds.) Handbook of the Birds of the World Alive (Lynx Edicions, 2018).

  38. Valente, L., Etienne, R. S. & Dávalos, L. M. Recent extinctions disturb path to equilibrium diversity in Caribbean bats. Nat. Ecol. Evol. 1, 0026 (2017).

    Google Scholar 

  39. Steadman, D. W. Extinction and Biogeography of Tropical Pacific Birds (Univ. Chicago Press, 2006).

  40. Cheke, A. & Hume, J. P. Lost Land of the Dodo: The Ecological History of Mauritius, Réunion and Rodrigues (Bloomsbury, 2010).

  41. Lerner, H. R. L., Meyer, M., James, H. F., Hofreiter, M. & Fleischer, R. C. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr. Biol. 21, 1838–1844 (2011).

    CAS  PubMed  Google Scholar 

  42. Rando, J. C., Pieper, H., Olson, S. L., Pereira, F. & Alcover, J. A. A new extinct species of large bullfinch (Aves: Fringillidae: Pyrrhula) from Graciosa Island (Azores, North Atlantic Ocean). Zootaxa 4282, 567–583 (2017).

    Google Scholar 

  43. Illera, J. C., Rando, J. C., Richardson, D. S. & Emerson, B. C. Age, origins and extinctions of the avifauna of Macaronesia: a synthesis of phylogenetic and fossil information. Quat. Sci. Rev. 50, 14–22 (2012).

    ADS  Google Scholar 

  44. Hume, J. P., Martill, D. & Hing, R. A terrestrial vertebrate palaeontological review of Aldabra atoll, Aldabra group, Seychelles. PLoS ONE 13, e0192675 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Cheke, A. S. Extinct birds of the Mascarenes and Seychelles—a review of the causes of extinction in the light of an important new publication on extinct birds. Phelsuma 21, 4–19 (2013).

    Google Scholar 

  46. Hume, J. P. & Walters, M. Extinct Birds (A&C Black, 2012).

  47. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    CAS  PubMed  Google Scholar 

  50. Weir, J. T. & Schluter, D. Calibrating the avian molecular clock. Mol. Ecol. 17, 2321–2328 (2008).

    CAS  PubMed  Google Scholar 

  51. Field, D. J. et al. Timing the extant avian radiation: the rise of modern birds, and the importance of modeling molecular rate variation. PeerJ Preprints 7, e27521v1 (2019).

    Google Scholar 

  52. Cicero, C. & Johnson, N. K. Higher-level phylogeny of new world Vireos (Aves: Vireonidae) based on sequences of multiple mitochondrial DNA genes. Mol. Phylogenet. Evol. 20, 27–40 (2001).

    CAS  PubMed  Google Scholar 

  53. Valente, L., Phillimore, A. B. & Etienne, R. S. Using molecular phylogenies in island biogeography: it’s about time. Ecography 41, 1684–1686 (2018).

    Google Scholar 

  54. Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816–1824 (2010).

    PubMed  Google Scholar 

  55. Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Phil. Trans. R. Soc. Lond. B 344, 305–311 (1994).

    ADS  CAS  Google Scholar 

  56. Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B 279, 1300–1309 (2012).

    PubMed  Google Scholar 

  57. Stervander, M. et al. Disentangling the complex evolutionary history of the Western Palearctic blue tits (Cyanistes spp.) — phylogenomic analyses suggest radiation by multiple colonization events and subsequent isolation. Mol. Ecol. 24, 2477–2494 (2015).

    CAS  PubMed  Google Scholar 

  58. Ogilvie, H. A., Heled, J., Xie, D. & Drummond, A. J. Computational performance and statistical accuracy of *BEAST and comparisons with other methods. Syst. Biol. 65, 381–396 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Maddison, W. P. & Knowles, L. L. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30 (2006).

    PubMed  Google Scholar 

  60. Lemmon, A. R., Brown, J. M., Stanger-Hall, K. & Lemmon, E. M. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst. Biol. 58, 130–145 (2009).

    CAS  PubMed  Google Scholar 

  61. Weigelt, P. & Kreft, H. Quantifying island isolation—insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).

    Google Scholar 

  62. Nielson, D. L. & Sibbett, B. S. Geology of Ascension Island, South Atlantic Ocean. Geothermics 25, 427–448 (1996).

    CAS  Google Scholar 

  63. Ramalho, R. S. et al. Emergence and evolution of Santa Maria Island (Azores)—the conundrum of uplifted islands revisited. Geol. Soc. Am. Bull. 129, 372–390 (2017).

    ADS  Google Scholar 

  64. Hearty, P. J. & Olson, S. L. Geochronology, biostratigraphy, and changing shell morphology in the land snail subgenus Poecilozonites during the Quaternary of Bermuda. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 9–29 (2010).

    Google Scholar 

  65. Carracedo, J. C. & Troll, V. R. The Geology of the Canary Islands (Elsevier, 2016).

  66. Ramalho, R. Building the Cape Verde Islands (Springer, 2011).

  67. Eisenhauer, A., Heiss, G. A., Sheppard, C. R. C. & Dullo, W. C. in Ecology of the Chagos Archipelago (eds. Sheppard, C. R. C. & Seaward, M. R. D.) 21–31 (Linnean Society Occasional Publications, 1999).

  68. Campbell, H. J. Fauna and flora of the Chatham Islands: less than 4 m.y. old. Geological Society of New Zealand Miscellaneous Publication 97 (eds Cooper, R. A. & Jones, C.) 15–16 (Geological Society of New Zealand, 1998).

  69. Bullough, F. History and geology of Christmas Island. Geological Society of London Blog https://blog.geolsoc.org.uk/2013/12/18/door-18-history-and-geology-of-christmas-island/ (2013).

  70. Castillo, P. et al. Anomalously young volcanoes on old hot-spot traces: I. Geology and petrology of Cocos Island. Geol. Soc. Am. Bull. 100, 1400–1414 (1988).

    ADS  CAS  Google Scholar 

  71. Woodroffe, C. D., Veeh, H. H., Falkland, A. C., McLean, R. F. & Wallensky, E. Last interglacial reef and subsidence of the Cocos (Keeling) Islands, Indian Ocean. Mar. Geol. 96, 137–143 (1991).

    ADS  Google Scholar 

  72. Nougier, J., Cantagrel, J. M. & Karche, J. P. The Comores archipelago in the western Indian Ocean: volcanology, geochronology and geodynamic setting. J. Afr. Earth Sci. 5, 135–144 (1986).

    ADS  CAS  Google Scholar 

  73. Almeida, F. in Sítios Geológicos e Paleontológicos do Brasil (eds Schobbenhaus, C. et al.) 361–368 (Comissão Brasileira de Sítios Geológicos e Paleobiológicos, 2000).

  74. Ali, J. R. & Aitchison, J. C. Exploring the combined role of eustasy and oceanic island thermal subsidence in shaping biodiversity on the Galápagos. J. Biogeogr. 41, 1227–1241 (2014).

    Google Scholar 

  75. Ryan, P. G. in Encyclopedia of Islands (eds. Gillespie, R. & Clague, D.) 929–932 (Univ. California Press, 2009).

  76. Batiza, R. Petrology and chemistry of Guadalupe Island: an alkalic seamount on a fossil ridge crest. Geology 5, 760–764 (1977).

    ADS  CAS  Google Scholar 

  77. Stuessy, T. F., Foland, K. A., Sutter, J. F., Sanders, R. W. & Silva O., M. Botanical and geological significance of potassium–argon dates from the Juan Fernandez islands. Science 225, 49–51 (1984).

    ADS  CAS  PubMed  Google Scholar 

  78. McDougall, I., Embleton, B. J. J. & Stone, D. B. Origin and evolution of Lord Howe Island, Southwest Pacific Ocean. J. Geol. Soc. Aust. 28, 155–176 (1981).

    CAS  Google Scholar 

  79. Mata, J. et al. in Geologia de Portugal, Volume II Geologia Meso-cenozoica de Portugal (eds. Dias, R. et al.) 691–746 (Escolar Editora, 2013).

  80. Guille, G. et al. Les marquises (Polynésie Françaises): un archipel intraocéanique atypique. Geol. France 2, 5–36 (2002).

    Google Scholar 

  81. Montaggioni, L. & Nativel, P. La Reunion, Ile Maurice. Géologie et Aperçus Biologiques, Plantes et Animaux (Masson, 1988).

  82. Grandcolas, P. et al. New Caledonia: a very old Darwinian island? Phil. Trans. R. Soc. B 363, 3309–3317 (2008).

    Google Scholar 

  83. Anthoni, J. Geography and geology of Niue. http://www.seafriends.org.nz/niue/geo.htm (2005).

  84. Jones, J. G. & McDougall, I. Geological history of Norfolk and Philip islands, southwest Pacific Ocean. J. Geol. Soc. Aust. 20, 239–254 (1973).

    CAS  Google Scholar 

  85. Suzuki, M., Taisuke, S. & Hideo, T. Nomination of the Ogasawara Islands for Inscription on the World Heritage List (Government of Japan, 2010).

  86. Neall, V. E. & Trewick, S. A. The age and origin of the Pacific islands: a geological overview. Phil. Trans. R. Soc. B 363, 3293–3308 (2008).

    PubMed  Google Scholar 

  87. Hekinian, R. et al. The Pitcairn hotspot in the South Pacific: distribution and composition of submarine volcanic sequences. J. Volcanol. Geotherm. Res. 121, 219–245 (2003).

    ADS  CAS  Google Scholar 

  88. Vezzoli, L. & Acocella, V. Easter Island, SE Pacific: an end-member type of hotspot volcanism. Bull. Geol. Soc. Am. 121, 869–886 (2009).

    CAS  Google Scholar 

  89. Gillot, P.-Y., Lefèvre, J.-C. & Nativel, P.-E. Model for the structural evolution of the volcanoes of Réunion Island. Earth Planet. Sci. Lett. 122, 291–302 (1994).

    ADS  Google Scholar 

  90. Safford, R. & Hawkins, F. The Birds of Africa: Volume VIII: The Malagasy Region: Madagascar, Seychelles, Comoros, Mascarenes (A&C Black, 2013).

  91. Baker, I., Gale, N. H. & Simons, J. Geochronology of the St Helena volcanoes. Nature 215, 1451–1456 (1967).

    ADS  Google Scholar 

  92. Duncan, R. A. in Investigations of the Northern Melanesian Borderland, Earth Science Series (Circum Pacific Council Publications, 1985).

  93. Lee, D. C., Halliday, A. N., Fitton, J. G. & Poli, G. Isotopic variations with distance and time in the volcanic islands of the Cameroon line: evidence for a mantle plume origin. Earth Planet. Sci. Lett. 123, 119–138 (1994).

    ADS  CAS  Google Scholar 

  94. Geldmacher, J., Hoernle, K., Van Den Bogaard, P., Zankl, G. & Garbe-Schönberg, D. Earlier history of the ≥70-Ma-old Canary hotspot based on the temporal and geochemical evolution of the Selvagen Archipelago and neighboring seamonts in the Eastern North Atlantic. J. Volcanol. Geotherm. Res. 111, 55–87 (2001).

    ADS  CAS  Google Scholar 

  95. Clouard, V. & Bonneville, A. A in Plates, Plumes and Paradigms (eds Foulger, G. R. et al.) 71–90 (Geological Society of America, 2005).

  96. Bohrson, W. A. et al. Prolonged history of silicic peralkaline volcanism in the eastern Pacific Ocean. J. Geophys. Res. 101, 11457–11474 (1996).

    ADS  Google Scholar 

  97. Kroenke, L. W. in The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes (eds. Keast, A. & Miller, S.) 19–34 (SPD Academic Publishing, 1996).

  98. Ollier, C. D. Geomorphology of South Atlantic volcanic islands. Part I: the Tristan da Cunha group. Z. Geomorphol. 28, 367–382 (1984).

    Google Scholar 

  99. Kocher, T. D. et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl Acad. Sci. USA 86, 6196–6200 (1989).

    ADS  CAS  PubMed  Google Scholar 

  100. Dietzen, C., Witt, H.-H. & Wink, M. The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: evidence for a new robin taxon on Gran Canaria? Avian Sci. 3, 115–132 (2003).

    Google Scholar 

  101. Edwards, S. V., Arctander, P. & Wilson, A. C. Mitochondrial resolution of a deep branch in the genealogical tree for perching birds. Proc. R. Soc. Lond. B 243, 99–107 (1991).

    ADS  CAS  Google Scholar 

  102. Helm-Bychowski, K. & Cracraft, J. Recovering phylogenetic signal from DNA sequences: relationships within the corvine assemblage (class Aves) as inferred from complete sequences of the mitochondrial DNA cytochrome-b gene. Mol. Biol. Evol. 10, 1196–1214 (1993).

    CAS  PubMed  Google Scholar 

  103. Warren, B. H., Bermingham, E., Bowie, R. C. K., Prys-Jones, R. P. & Thébaud, C. Molecular phylogeography reveals island colonization history and diversification of western Indian Ocean sunbirds (Nectarinia: Nectariniidae). Mol. Phylogenet. Evol. 29, 67–85 (2003).

    PubMed  Google Scholar 

  104. Farrington, H. L., Lawson, L. P., Clark, C. M. & Petren, K. The evolutionary history of Darwin’s finches: speciation, gene flow, and introgression in a fragmented landscape. Evolution 68, 2932–2944 (2014).

    PubMed  Google Scholar 

  105. Warren, B. H. et al. Hybridization and barriers to gene flow in an island bird radiation. Evolution 66, 1490–1505 (2012).

    PubMed  Google Scholar 

  106. Warren, B. H., Bermingham, E., Prys-Jones, R. P. & Thebaud, C. Tracking island colonization history and phenotypic shifts in Indian Ocean bulbuls (Hypsipetes: Pycnonotidae). Biol. J. Linn. Soc. 85, 271–287 (2005).

    Google Scholar 

  107. Andersen, M. J., Hosner, P. A., Filardi, C. E. & Moyle, R. G. Phylogeny of the monarch flycatchers reveals extensive paraphyly and novel relationships within a major Australo-Pacific radiation. Mol. Phylogenet. Evol. 83, 118–136 (2015).

    PubMed  Google Scholar 

  108. Sari, E. H. R. & Parker, P. G. Understanding the colonization history of the Galápagos flycatcher (Myiarchus magnirostris). Mol. Phylogenet. Evol. 63, 244–254 (2012).

    PubMed  Google Scholar 

  109. Chaves, J. A., Parker, P. G. & Smith, T. B. Origin and population history of a recent colonizer, the yellow warbler in Galápagos and Cocos Islands. J. Evol. Biol. 25, 509–521 (2012).

    CAS  PubMed  Google Scholar 

  110. Martínez-Gómez, J. E., Barber, B. R. & Peterson, A. T. Phylogenetic position and generic placement of the Socorro wren (Thryomanes sissonii). Auk 122, 50–56 (2005).

    Google Scholar 

  111. Warren, B. H., Bermingham, E., Prys-Jones, R. P. & Thébaud, C. Immigration, species radiation and extinction in a highly diverse songbird lineage: white-eyes on Indian Ocean islands. Mol. Ecol. 15, 3769–3786 (2006).

    CAS  PubMed  Google Scholar 

  112. McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916 (2014).

    CAS  PubMed  Google Scholar 

  113. Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large-scale continental radiation: the neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).

    PubMed  Google Scholar 

  114. Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94 (2016).

    PubMed  Google Scholar 

  115. Scofield, R. P. et al. The origin and phylogenetic relationships of the New Zealand ravens. Mol. Phylogenet. Evol. 106, 136–143 (2017).

    PubMed  Google Scholar 

  116. Cibois, A., Thibault, J. C., Bonillo, C., Filardi, C. E. & Pasquet, E. Phylogeny and biogeography of the imperial pigeons (Aves: Columbidae) in the Pacific Ocean. Mol. Phylogenet. Evol. 110, 19–26 (2017).

    PubMed  Google Scholar 

  117. Friis, G., Aleixandre, P., Rodríguez-Estrella, R., Navarro-Sigüenza, A. G. & Milá, B. Rapid postglacial diversification and long-term stasis within the songbird genus Junco: phylogeographic and phylogenomic evidence. Mol. Ecol. 25, 6175–6195 (2016).

    CAS  PubMed  Google Scholar 

  118. Marki, P. Z. et al. Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes). Mol. Phylogenet. Evol. 107, 516–529 (2017).

    PubMed  Google Scholar 

  119. Fuchs, J. et al. Long-distance dispersal and inter-island colonization across the western Malagasy Region explain diversification in brush-warblers (Passeriformes: Nesillas). Biol. J. Linn. Soc. 119, 873–889 (2016).

    Google Scholar 

  120. Cibois, A. et al. Phylogeny and biogeography of the fruit doves (Aves: Columbidae). Mol. Phylogenet. Evol. 70, 442–453 (2014).

    PubMed  Google Scholar 

  121. Carmi, O., Witt, C. C., Jaramillo, A. & Dumbacher, J. P. Phylogeography of the vermilion flycatcher species complex: multiple speciation events, shifts in migratory behavior, and an apparent extinction of a Galápagos-endemic bird species. Mol. Phylogenet. Evol. 102, 152–173 (2016).

    PubMed  Google Scholar 

  122. Cornetti, L. et al. The genome of the ‘great speciator’ provides insights into bird diversification. Genome Biol. Evol. 7, 2680–2691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the skilled guides and field assistants who helped with sample collection in the field; the ornithologists and collection curators who were kind enough to reply to requests for material; T. von Rintelen, K. von Rintelen and C. Zorn for support or advice; A. Pigot for comments on the manuscript; N. Bunbury (Seychelles Islands Foundation), who organized sample loans of Aldabra island; J. van de Crommenacke, J. Groombridge and H. Jackson for providing samples or DNA sequences; J. A. Alcover, J. C. Rando, F. Sayol and S. Faurby for sharing data on extinct species; C. Baeta, M. Hammers, J. Hume, D. Shapiro, J. Varela and P. Cascão for permission to use photographs or illustrations; P. Hearty, R. Stern and M. Reagan for expertise on island geological ages; A. Cibois, J. McGuire, H. Lerner, P. Marki, B. Milá, G. Friis, J. Fuchs, J. P. Dumbacher and O. Carmi for providing phylogenetic data; P. Weigelt for map data. We thank the following for permission to obtain new samples or to access existing samples, and for logistic support (locations are given in brackets): A. Carvalho and the Department of the Environment (São Tomé and Príncipe); J. Obiang, N. Calvo and the Universidad Nacional de Guinea Ecuatorial for Bioko and Annobón samples (Equatorial Guinea); the Ministry of Environment, Energy and Climate Change of the Republic of Seychelles, the Seychelles Bureau of Standards, BirdLife Seychelles and Seychelles Islands Foundation (Seychelles); Centre National de Documentation et de Recherche Scientifique (Grande Comore & Anjouan), Action Comores, Direction de l’Agriculture et de la Foret (Mayotte) (Comoros); Ministere des Eaux et Forets (Madagascar) and the Madagascar Institute pour la Conservation des Ecosystemes Tropicaux (Madagascar); Mauritius National Parks and Conservation Service and Mauritius Wildlife Foundation (Mauritius); O. Hébert, W. Waheoneme, N. Clark, the Direction de L’Environment (South Province), Direction du Développement Economique (Loyalty Islands Province), and local chiefs and landowners (New Caledonia); Moroccan Environment Ministry (Morocco); Cape Verde Agriculture and Environment Ministry (Cape Verde); F. Njie and the Limbe Botanical and Zoological Garden (Cameroon); Station de Recherche de l’IRET at Ipassa-Makokou (Gabon); Fernanda Lages (ISCED-Huíla) (Angola); the regional governments of Andalucía and the Canary Islands (Spain); regional governments of Madeira and the Azores (Portugal). We thank the Department of Ornithology and Mammalogy of the California Academy of Sciences (L. Wilkinson and M. Flannery) for loaning Galápagos samples; the Natural History Museum at Tring (M. Adams) for loaning Comoros samples; the Stuttgart State Museum of Natural History for loaning stonechat samples from Madagascar. S. Block assisted with cluster analyses at the Museum für Naturkunde. The Center for Information Technology of the University of Groningen provided support and access to the Peregrine high-performance computing cluster. L.V. was funded by the German Science Foundation (DFG Research grant VA 1102/1-1), the Alexander von Humboldt Foundation, the Brandenburg Postdoc Prize 2015 and by a VIDI grant from the Netherlands Organisation for Scientific Research (NWO); R.S.E. was supported by a NWO VICI grant; M.M. was supported by the Portuguese Science and Technology Foundation (post-doctoral grant: SFRH/BPD/100614/2014); S.M.C. was supported by the National Geographic Society (CRE grant 9383-13); J.C.I. was supported by the Spanish Ministry of Science, Innovation and Universities (PGC2018-097575-B-I00) and by a GRUPIN research grant from the Regional Government of Asturias (IDI/2018/000151); and C.T. was supported by the ‘Laboratoire d’Excellence’ TULIP (ANR-10-LABX-41).

Author information

Authors and Affiliations

Authors

Contributions

L.V., A.B.P. and R.S.E. designed the study, developed the analytical framework and performed statistical analyses. L.V. compiled the data, conducted most of the analyses and wrote the first draft. R.S.E. developed the likelihood method. A.B.P. and R.S.E. contributed substantially to the writing. M.M., B.H.W., S.M.C., J.C.I. and C.T. provided expertise on island birds, collected bird tissue samples, and provided molecular and/or phylogenetic data. K.H. and J.C.I. performed laboratory work. R.T. contributed to molecular analyses. T.A. performed analyses. All authors commented on the draft.

Corresponding author

Correspondence to Luis Valente.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Thomas Matthews, Kostas Triantis, Jason Weir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Variation of cladogenesis with isolation and area.

Contour plot showing how the local rate of cladogenesis varies with area and Dm assuming the maximum-likelihood global hyperparameters of the M19 model (equations describing the relationships are provided in Supplementary Table 1). Numbers correspond to the archipelago numbers from Fig. 1 and show the local cladogenesis rates for each of the archipelagos in our dataset. Area is shown as a log scale.

Extended Data Fig. 2 Bootstrap precision estimates of the parameters of the M19 model.

Parametric bootstrap analysis fitting the M19 model to 1,000 global datasets simulated with maximum-likelihood parameters of the M19 model. Plots are frequency histograms of estimated parameters. Black lines show the median estimated values across all simulations and the blue lines the simulated values. Dashed lines show 2.5–97.5 percentiles. Parameters are explained in Supplementary Table 1. Bootstrap parameter estimates for the M14 model are shown in Extended Data Table 5.

Extended Data Fig. 3 Randomization analysis of the M19 model.

Distribution of global hyperparameters estimated from each of 1,000 datasets with the same phylogenetic data as our main global dataset but randomly reshuffling archipelago area and isolation among the 41 archipelagos in the dataset. Grey histograms show DAISIE maximum-likelihood parameter estimates for the M19 model. Red arrows show the estimated parameter from the real data. In most cases, the hyperparameters describing the exponent of the power models (x, α, β and d0) are estimated as zero in the reshuffled datasets, which is not the case in the real data (red). Parameters are explained in Supplementary Table 1.

Extended Data Fig. 4 Goodness of fit of the preferred model (M19).

Plots show the observed total number of species, cladogenetic species and colonizations versus those simulated by the model. Median and 95% percentiles are shown for 1,000 simulations of each archipelago. Selected archipelagos mentioned in the main text or well-known archipelagos for which one or more of the diversity metrics are under- or overestimated are highlighted in colour. Dashed line is y = x. See also Fig. 3.

Extended Data Fig. 5 Ratio of pseudo-R2 observed over pseudo-R2 simulated.

Estimates were based on 10,000 datasets simulated using the M19 model. A ratio centred on 1 would indicate that the model explains the observed data as well as it is able to explain the average dataset simulated under the maximum-likelihood parameters.

Extended Data Fig. 6 Sensitivity to colonization and branching times.

a, Maximum-likelihood parameter estimates of the M19 model (preferred model) for datasets differing in colonization and branching times. D6 represents 100 datasets, therefore, the 2.5 and 97.5 percentiles are shown. Parameter symbols are described in Supplementary Table 1. b, Estimated relationships between island area and isolation and local island biogeography parameters for each dataset. Under the M19 model, cladogenesis rate increases with both area and isolation, and thus plots for more (far, 5,000 km) and less (near, 50 km) isolated islands are shown.

Extended Data Table 1 Archipelago characteristics and references for island geological ages
Extended Data Table 2 Primer sequences used in this study
Extended Data Table 3 The 80 alignments used in the phylogenetic analyses
Extended Data Table 4 Previously published dated trees used
Extended Data Table 5 Bootstrap of M14 and M19 models

Supplementary information

Supplementary Tables

This file contains Supplementary Tables 1-7.

Reporting Summary

Supplementary Data 1

| Island birds database Includes the database of taxa of our focal group found on each of the 41 archipelagos.

Supplementary Data 2

| Full archipelago data Includes physical data, species richness and sampling (from the focal group of taxa) for the 41 archipelagos included in this study.

Supplementary Data 3

| Sensitivity to archipelago selection and isolation metrics Results of the sensitivity analyses excluding single islands, using different isolation metrics and with Mascarenes fused as a single archipelago.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valente, L., Phillimore, A.B., Melo, M. et al. A simple dynamic model explains the diversity of island birds worldwide. Nature 579, 92–96 (2020). https://doi.org/10.1038/s41586-020-2022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2022-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing