Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurement of the quantum geometric tensor and of the anomalous Hall drift


Topological physics relies on the structure of the eigenstates of the Hamiltonians. The geometry of the eigenstates is encoded in the quantum geometric tensor1—comprising the Berry curvature2 (crucial for topological matter)3 and the quantum metric4, which defines the distance between the eigenstates. Knowledge of the quantum metric is essential for understanding many phenomena, such as superfluidity in flat bands5, orbital magnetic susceptibility6,7, the exciton Lamb shift8 and the non-adiabatic anomalous Hall effect6,9. However, the quantum geometry of energy bands has not been measured. Here we report the direct measurement of both the Berry curvature and the quantum metric in a two-dimensional continuous medium—a high-finesse planar microcavity10—together with the related anomalous Hall drift. The microcavity hosts strongly coupled exciton–photon modes (exciton polaritons) that are subject to photonic spin–orbit coupling11 from which Dirac cones emerge12, and to exciton Zeeman splitting, breaking time-reversal symmetry. The monopolar and half-skyrmion pseudospin textures are measured using polarization-resolved photoluminescence. The associated quantum geometry of the bands is extracted, enabling prediction of the anomalous Hall drift, which we measure independently using high-resolution spatially resolved epifluorescence. Our results unveil the intrinsic chirality of photonic modes, the cornerstone of topological photonics13,14,15. These results also experimentally validate the semiclassical description of wavepacket motion in geometrically non-trivial bands9,16. The use of exciton polaritons (interacting photons) opens up possibilities for future studies of quantum fluid physics in topological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emergence of pseudospin monopoles from photoluminescence at 0 T.
Fig. 2: Broken time-reversal symmetry: emergence of half-skyrmion pseudospin textures, from photoluminescence at 9 T.
Fig. 3: Berry curvature and quantum metric distributions.
Fig. 4: Polariton anomalous Hall effect.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available in the Open Science Framework (OSF) repository at


  1. Berry, M. The quantum phase, five years after. In Geometric Phases in Physics (eds Wilczek, F. & Shapere, A.) 7–28 (World Scientific, 1989).

  2. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  CAS  Google Scholar 

  4. Provost, J. & Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289–301 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  5. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    Article  ADS  CAS  Google Scholar 

  6. Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    Article  ADS  Google Scholar 

  7. Piéchon, F., Raoux, A., Fuchs, J.-N. & Montambaux, G. Geometric orbital susceptibility: quantum metric without Berry curvature. Phys. Rev. B 94, 134423 (2016).

    Article  ADS  Google Scholar 

  8. Srivastava, A. & Imamoglu, A. Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett. 115, 166802 (2015).

    Article  ADS  Google Scholar 

  9. Bleu, O., Malpuech, G., Gao, Y. & Solnyshkov, D. D. Effective theory of nonadiabatic quantum evolution based on the quantum geometric tensor. Phys. Rev. Lett. 121, 020401 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. (eds) Microcavities (Oxford Univ. Press, 2011).

  11. Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).

    Article  ADS  Google Scholar 

  12. Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).

    Article  ADS  Google Scholar 

  13. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  CAS  Google Scholar 

  14. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  CAS  Google Scholar 

  15. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  Google Scholar 

  18. Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Delplace, P., Marston, J. & Venaille, A. Topological origin of equatorial waves. Science 358, 1075–1077 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Zanardi, P., Giorda, P. & Cozzini, M. Information-theoretic differential geometry of quantum phase transitions. Phys. Rev. Lett. 99, 100603 (2007).

    Article  ADS  Google Scholar 

  21. Liang, L., Peotta, S., Harju, A. & Törmä, P. Wave-packet dynamics of Bogoliubov quasiparticles: quantum metric effects. Phys. Rev. B 96, 064511 (2017).

    Article  ADS  Google Scholar 

  22. Hauke, P., Lewenstein, M. & Eckardt, A. Tomography of band insulators from quench dynamics. Phys. Rev. Lett. 113, 045303 (2014).

    Article  ADS  Google Scholar 

  23. Lim, L.-K., Fuchs, J.-N. & Montambaux, G. Geometry of Bloch states probed by Stückelberg interferometry. Phys. Rev. A 92, 063627 (2015).

    Article  ADS  Google Scholar 

  24. Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016).

    Article  ADS  Google Scholar 

  25. Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article  CAS  Google Scholar 

  26. Yu, M. et al. Experimental measurement of the quantum geometric tensor using coupled qubits in diamond. Natl Sci. Rev. nwz193 (2019).

  27. Tan, X. et al. Experimental measurement of the quantum metric tensor and related topological phase transition with a superconducting qubit. Phys. Rev. Lett. 122, 210401 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Bleu, O., Solnyshkov, D. D. & Malpuech, G. Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems. Phys. Rev. B 97, 195422 (2018).

    Article  ADS  CAS  Google Scholar 

  29. Richter, S. et al. Exceptional points in anisotropic planar microcavities. Phys. Rev. A 95, 023836 (2017).

    Article  ADS  Google Scholar 

  30. Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).

    Article  ADS  CAS  Google Scholar 

  32. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    Article  ADS  CAS  Google Scholar 

  33. Bleu, O., Malpuech, G. & Solnyshkov, D. D. Robust quantum valley Hall effect for vortices in an interacting bosonic quantum fluid. Nature Commun. 9, 3991 (2018).

    Article  ADS  CAS  Google Scholar 

  34. Steger, M., Gautham, C., Snoke, D. W., Pfeiffer, L. & West, K. Slow reflection and two-photon generation of microcavity exciton–polaritons. Optica 2, 1–5 (2015).

    Article  ADS  CAS  Google Scholar 

  35. Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017).

    Article  ADS  Google Scholar 

  36. Armitage, A. et al. Exciton polaritons in semiconductor quantum microcavities in a high magnetic field. Phys. Rev. B 55, 16395–16403 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Rahimi-Iman, A. et al. Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84, 165325 (2011).

    Article  ADS  Google Scholar 

Download references


We thank D. Colas for critical reading of the manuscript. This work was supported by the ERC project ElecOpteR (grant number 780757). We acknowledge the support of the project Quantum Fluids of Light (ANR-16-CE30-0021), of the ANR Labex Ganex (ANR-11-LABX-0014), and of the ANR program Investissements d’Avenir through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). D.D.S. acknowledges the support of the IUF (Institut Universitaire de France). This work was partially supported by the FISR-CNR project "TECNOMED—Tecnopolo di nanotecnologia e fotonica per la medicina di precisione".

Author information

Authors and Affiliations



A.G., L.D. and D.B. designed the setup. A.G. realized the experiments with the help of V.A., M.D.G. and G.L. D.S. supervised the experimental part. K.W.W. and L.N.P. fabricated the sample. O.B., D.D.S. and G.M. performed the treatment of the experimental data. O.B. performed analytical calculations. G.M. and O.B. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to D. Sanvitto or G. Malpuech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Ulf Peschel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental setup.

Schematic of the polarization tomography experiment. The incoming pump laser (bottom right) is focused onto the sample held in the cryogenic superconductive magnet (bottom left). The emission is recollected, polarization filtered and the momentum space optically rebuilt at the entrance slits of a spectrometer (top) with energy resolution of 30 µeV (top left). The Zeeman splitting is highlighted in the inset.

Supplementary information

Supplementary Information

The file contains five Supplementary Notes and six Supplementary Figures. The notes present the details of the data treatment, uncertainty estimates, and the analytical calculations. The figures show the examples of raw photoluminescence data and additional results on the Berry curvature and anomalous Hall effect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianfrate, A., Bleu, O., Dominici, L. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing