Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hidden diversity of vacancy networks in Prussian blue analogues

Abstract

Prussian blue analogues (PBAs) are a diverse family of microporous inorganic solids, known for their gas storage ability1, metal-ion immobilization2, proton conduction3, and stimuli-dependent magnetic4,5, electronic6 and optical7 properties. This family of materials includes the double-metal cyanide catalysts8,9 and the hexacyanoferrate/hexacyanomanganate battery materials10,11. Central to the various physical properties of PBAs is their ability to reversibly transport mass, a process enabled by structural vacancies. Conventionally presumed to be random12,13, vacancy arrangements are crucial because they control micropore-network characteristics, and hence the diffusivity and adsorption profiles14,15. The long-standing obstacle to characterizing the vacancy networks of PBAs is the inaccessibility of single crystals16. Here we report the growth of single crystals of various PBAs and the measurement and interpretation of their X-ray diffuse scattering patterns. We identify a diversity of non-random vacancy arrangements that is hidden from conventional crystallographic powder analysis. Moreover, we explain this unexpected phase complexity in terms of a simple microscopic model that is based on local rules of electroneutrality and centrosymmetry. The hidden phase boundaries that emerge demarcate vacancy-network polymorphs with very different micropore characteristics. Our results establish a foundation for correlated defect engineering in PBAs as a means of controlling storage capacity, anisotropy and transport efficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structure of PBAs.
Fig. 2: Single-crystal diffuse scattering from PBAs.
Fig. 3: Vacancy network phase diagram.
Fig. 4: Statistical properties of micropore networks.

Data availability

The raw data on which this manuscript is based are openly available for download from https://doi.org/10.5287/bodleian:8JB5XgybE. These data include the scattering images given in Fig. 2 and the Monte Carlo configurations from which Figs. 3 and 4 are derived.

Code availability

All custom code used in this study was developed using widely available algorithms. Copies of the code used can be obtained upon request.

References

  1. 1.

    Kaye, S. S. & Long, J. R. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005).

    CAS  PubMed  Google Scholar 

  2. 2.

    Haas, P. A. A review of information on ferrocyanide solids for removal of cesium from solutions. Sep. Sci. Technol. 28, 2479–2506 (1993).

    CAS  Google Scholar 

  3. 3.

    Ohkoshi, S.-I. et al. High proton conductivity in Prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132, 6620–6621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    ADS  CAS  Google Scholar 

  5. 5.

    Maurin, I. et al. Evidence for complex multistability in photomagnetic cobalt hexacyanoferrates from combined magnetic and synchrotron X-ray diffraction measurements. Phys. Rev. B 79, 064420 (2009).

    ADS  Google Scholar 

  6. 6.

    Rykov, A. I., Li, X. & Wang, J. Crystal structure refinement of the electron-transfer-active potassium manganese hexacyanoferrates and isomorphous potassium manganese hexacyanocobaltates. J. Solid State Chem. 227, 35–44 (2015).

    ADS  CAS  Google Scholar 

  7. 7.

    Bleuzen, A. et al. Photoinduced ferrimagnetic systems in Prussian blue analogues CI xCo4[Fe(CN)6]y (CI = alkali cation). 1. Conditions to observe the phenomenon. J. Am. Chem. Soc. 122, 6648–6652 (2000).

    CAS  Google Scholar 

  8. 8.

    Le-Khac, B. & Chester, W. Highly active double metal cyanide catalysts. US patent 5,714,428 (1998).

  9. 9.

    Peeters, A. et al. Zn–Co double metal cyanides as heterogeneous catalysts for hydroamination: a structure–activity relationship. ACS Catal. 3, 597–607 (2013).

    CAS  Google Scholar 

  10. 10.

    Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Pasta, M. et al. Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ludi, A., Güdel, H.-U. & Ruegg, M. The structural chemistry of Prussian blue analogs. A single-crystal study of manganese(II)hexacyanocobaltate(III), Mn3[Co(CN)6]2·xH2O. Inorg. Chem. 9, 2224–2227 (1970).

    CAS  Google Scholar 

  13. 13.

    Roque, J. et al. Porous hexacyanocobaltates(III): role of the metal on the framework properties. Microporous Mesoporous Mater. 103, 57–71 (2007).

    CAS  Google Scholar 

  14. 14.

    Moritomo, Y., Igarashi, K., Kim, J. & Tanaka, H. Size-dependent cation channel in nanoporous Prussian blue lattice. Appl. Phys. Express 2, 085001 (2009).

    ADS  Google Scholar 

  15. 15.

    Xiong, Q., Baychev, T. G. & Jivkov, A. P. Review of pore network modelling of porous media: experimental characteristics, network constructions and applications to reactive transport. J. Contam. Hydrol. 192, 101–117 (2016).

    ADS  CAS  Google Scholar 

  16. 16.

    Grandjean, F., Samain, L. & Long, G. J. Characterization and utilization of Prussian blue and its pigments. Dalton Trans. 45, 18018–18044 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Keggin, J. F. & Miles, F. D. Structures and formulæ of the Prussian blues and related compounds. Nature 137, 577–578 (1936).

    ADS  CAS  Google Scholar 

  18. 18.

    Buser, H. J., Schwarzenbach, D., Petter, W. & Ludi, A. The crystal structure of Prussian blue: Fe4[Fe(CN)6]3·xH2O. Inorg. Chem. 16, 2704–2710 (1977).

    CAS  Google Scholar 

  19. 19.

    Herren, F., Fischer, P., Ludi, A. & Hälg, W. Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3·xH2O. Location of water molecules and long-range magnetic order. Inorg. Chem. 19, 956–959 (1980).

    CAS  Google Scholar 

  20. 20.

    Sharpe, A. G. The Chemistry of Cyano Complexes of the Transition Metals (Academic Press, 1976).

  21. 21.

    Buser, H.-J., Ron, G., Ludi, A. & Engel, P. Crystal structure of cadmium hexacyanopallidate(IV). J. Chem. Soc. Dalton Trans. 23, 2473–2474 (1974).

    Google Scholar 

  22. 22.

    Frisch, J. L. Notitia cœrulei Berolinensis nuper inventi. Misc. Berolin. 1, 377–378 (1710).

    Google Scholar 

  23. 23.

    Chadwick, B. M. & Sharpe, A. G. Transition metal cyanides and their complexes. Adv. Inorg. Chem. Radiochem. 8, 83–176 (1966).

    CAS  Google Scholar 

  24. 24.

    Krap, C. P., Balmaseda, J., del Castillo, L. F., Zamora, B. & Reguera, E. Hydrogen storage in Prussian blue analogues: H2 interaction with the metal found at the cavity surface. Energy Fuels 24, 581–589 (2010).

    CAS  Google Scholar 

  25. 25.

    van der Marck, S. C. Calculation of percolation thresholds in high dimensions for FCC, BCC and diamond lattices. Int. J. Mod. Phys. C 9, 529–540 (1998).

    ADS  Google Scholar 

  26. 26.

    Kaye, S. S. & Long, J. R. The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal. Today 120, 311–316 (2007).

    CAS  Google Scholar 

  27. 27.

    Roque-Malherbe, R., Lugo, F. & Polanco, R. Synthesis, structural elucidation and carbon dioxide adsorption on Zn(II) hexacyanoferrate(II) Prussian blue analogue. Appl. Surf. Sci. 385, 360–367 (2016).

    ADS  CAS  Google Scholar 

  28. 28.

    Flambard, A., Köhler, F. H. & Lescouëzec, R. Revisiting Prussian blue analogues with solid-state MAS NMR spectroscopy: spin density and local structure in [Cd3{Fe(CN)6}2]·15H2O. Angew. Chem. Int. Ed. 48, 1673–1676 (2009).

    CAS  Google Scholar 

  29. 29.

    Calderon, H. A. & Reguera, E. HREM of porous Prussian blue type materials for hydrogen storage. Microsc. Microanal. 18, 1468–1469 (2012).

    Google Scholar 

  30. 30.

    Franz, P. et al. Crystalline, mixed-valence manganese analogue of Prussian blue: magnetic, spectroscopic, X-ray and neutron diffraction studies. J. Am. Chem. Soc. 126, 16472–16477 (2004).

    CAS  Google Scholar 

  31. 31.

    Chernyshov, D. & Bosak, A. Diffuse scattering and correlated disorder in manganese analogue of Prussian blue. Phase Transit. 83, 115–122 (2010).

    CAS  Google Scholar 

  32. 32.

    Welberry, T. R. & Weber, T. One hundred years of diffuse scattering. Crystallogr. Rev. 22, 2–78 (2016).

    CAS  Google Scholar 

  33. 33.

    Weber, T. & Simonov, A. The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts. Z. Krist. 227, 238–247 (2012).

    CAS  Google Scholar 

  34. 34.

    Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell Univ. Press, 1960).

  35. 35.

    Paściak, M., Welberry, T. R., Kulda, J., Kempa, M. & Hlinka, J. Polar nanoregions and diffuse scattering in the relaxor ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. B 85, 224109 (2012).

    ADS  Google Scholar 

  36. 36.

    Battle, P. D., Evers, S. I., Hunter, E. C. & Westwood, M. La3Ni2SbO9: a relaxor ferromagnet. Inorg. Chem. 52, 6648–6653 (2013).

    CAS  Google Scholar 

  37. 37.

    Zhadanov, H. Crystalline structure of Zn(CN)2. C. R. Acad. Sci. URSS 31, 352–354 (1941).

    Google Scholar 

  38. 38.

    Shugam, E. & Zhdanov, H. The crystal structure of cyanides. The structure of Cd(CN)2. Acta Physiochim. URSS 20, 247–252 (1945).

    Google Scholar 

  39. 39.

    Siebert, H. & Jentsch, W. Rhomboedrisch kristallisierende Zink-hexacyanometallate(III) Zn3[M(CN)6]2. Z. Naturforsch. C 36, 123–124 (1981).

    Google Scholar 

  40. 40.

    Jaffe, B., Roth, R. S. & Marzullo, S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809–810 (1954).

    ADS  CAS  Google Scholar 

  41. 41.

    Bear, J. Dynamics of Fluids in Porous Media (Dover, 1988).

  42. 42.

    van der Linden, J. H., Narsillo, G. A. & Tordesillas, A. Machine learning framework for analysis of transport through complex networks in porous, granular media: a focus on permeability. Phys. Rev. E 94, 022904 (2016).

    ADS  Google Scholar 

  43. 43.

    Epstein, N. On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44, 777–779 (1989).

    CAS  Google Scholar 

  44. 44.

    Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    CAS  Google Scholar 

  45. 45.

    Zhang, T. et al. SFX analysis of non-biological polycrystalline samples. IUCrJ 2, 322–326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Yun, Y., Zou, X., Hovmöller, S. & Wan, W. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders. IUCrJ 2, 267–282 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Chapman, K. W., Chupas, P. J., Maxey, E. R. & Richardson, J. W. Direct observation of adsorbed H2-framework interactions in the Prussian blue analogue MnII 3[CoIII(CN)6]2: the relative importance of accessible coordination sites and van der Waals interactions. Chem. Commun. 4013–4015 (2006).

  48. 48.

    Ojwang, D. O. et al. Structure characterization and properties of K-containing copper hexacyanoferrate. Inorg. Chem. 55, 5924–5934 (2016).

    CAS  Google Scholar 

  49. 49.

    Liu, L. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    CAS  Google Scholar 

  50. 50.

    Brunklaus, G., Koller, H. & Zones, S. I. Defect models of as-made high-silica zeolites: clusters of hydrogen bonds and their interaction with the organic structure-directing agents determined from 1H double and triple quantum NMR spectroscopy. Angew. Chem. Int. Ed. 55, 14459–14463 (2016).

    CAS  Google Scholar 

  51. 51.

    Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS  Google Scholar 

  52. 52.

    Logvinovich, D. & Simonov, A. Meerkat. https://github.com/aglie/meerkat (2015).

  53. 53.

    Schmidt, E. & Neder, R. B. Diffuse single-crystal scattering corrected for molecular form factor effects. Acta Crystallogr. A 73, 231–237 (2017).

    CAS  Google Scholar 

  54. 54.

    Simonov, A., Weber, T. & Steurer, W. Experimental uncertainties of three-dimensional pair distribution function investigations exemplified on the diffuse scattering from a tris-tert-butyl-1,3,5-benzene tricarboxamide single crystal. J. Appl. Crystallogr. 47, 2011–2018 (2014).

    CAS  Google Scholar 

  55. 55.

    Blessing, R. H. Outlier treatment in data merging. J. Appl. Crystallogr. 30, 421–426 (1997).

    CAS  Google Scholar 

  56. 56.

    Kobas, M., Weber, T. & Steurer, W. Structural disorder in the decagonal Al–Co–Ni. I. Patterson analysis of diffuse X-ray scattering data. Phys. Rev. B 71, 224205 (2005).

    ADS  Google Scholar 

  57. 57.

    Simonov, A., Weber, T. & Steurer, W. Yell: a computer program for diffuse scattering analysis via three-dimensional delta pair distribution function refinement. J. Appl. Crystallogr. 47, 1146–1152 (2014).

    CAS  Google Scholar 

  58. 58.

    Earl, D. J. & Deem, M. W. Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Welberry, T. R., Goossens, D. J., Edwards, A. J. & David, W. I. F. Diffuse X-ray scattering from benzil, C14H10O2: analysis via automatic refinement of a Monte Carlo model. Acta Crystallogr. A 57, 101–109 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).

    CAS  Google Scholar 

  61. 61.

    Aschauer, U. & Spaldin, N. A. Interplay between strain, defect charge state, and functionality in complex oxides. Appl. Phys. Lett. 109, 031901 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

A.S. and A.L.G. gratefully acknowledge financial support from the Leverhulme Trust UK (grant no. RPG-2015-292), and T.D.B. acknowledges F.W.O.–Vlaanderen (Research Foundation Flanders) for a Postdoctoral Fellowship. A.S. thanks the Swiss National Science Foundation for Ambizione and PostDoc Mobility Fellowships (PZ00P2_180035, P2EZP2_155608) and Diamond Light Source for the provision of beamtime (MT13639, MT20876, CY22610). M.L.R.G. thanks the Consejo Nacional de Ciencia y Tecnología (Mexico) for a scholarship. A.L.G. thanks the European Research Council for funding (grant nos 279705 and 788144), P. D. Battle (Oxford) and A. R. Overy (Oxford) for valuable discussions, N. P. Funnell (ISIS), J. A. Hill (UCL) and C. S. Coates (Oxford) for assistance with single-crystal growth, and A. L. Thompson for assistance with synchrotron measurements.

Author information

Affiliations

Authors

Contributions

A.S., T.D.B., H.-B.B. and A.L.G. designed the research. H.L.B.B., M.L.R.G., H.J.G. and T.D.B. synthesized the materials. A.S., D.C., A.B. and H.-B.B. measured the single-crystal diffuse scattering patterns. A.S. performed the 3D-ΔPDF refinement. A.S. and A.L.G. developed and implemented the Monte Carlo model. A.S. and T.D.B. calculated percolation properties. A.S. and A.L.G. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Andrew L. Goodwin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Simon Billinge, T. Richard Welberry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Representative pore networks.

Representative pore networks for each phase within the Monte Carlo simulated phase diagram.

Extended Data Fig. 2 Representative 3D-ΔPDF.

a, Experimental diffuse scattering from the Co[Co] sample, hk0 section; voxel size is 1/30 reciprocal lattice units. b, Experimental and model 3D-ΔPDF map of the Co[Co] sample, uv0 section.

Extended Data Fig. 3 M′-site models.

The structure of the [Co(CN)6]3− and ‘vacancy’ moieties used in our Co[Co] model.

Extended Data Fig. 4 Alternative diffuse scattering phase map.

Diffuse scattering calculated with the modified model Hamiltonian; equation (2).

Extended Data Fig. 5 Diffuse scattering tiles.

Comparison of projected experimental diffuse scattering with the model diffuse scattering tiles for our various PBA samples; compare with Fig. 3.

Extended Data Fig. 6 Satellite reflections.

Satellite reflections in our Cu[Co] sample. The inset shows one specific satellite at (7.43, 1, 0).

Extended Data Fig. 7 Inelastic scattering.

Diffuse scattering in the Mn[Co]′ sample. Note that the intensity of the diffuse scattering at the (h + 1/3, k + 1/3, l) positions increases with increasing l; the scattering in the hk4 layer (right) is stronger than in the hk2 layer (left).

Extended Data Table 1 Synthesis summary
Extended Data Table 2 Data collection strategies
Extended Data Table 3 3D-ΔPDF model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonov, A., De Baerdemaeker, T., Boström, H.L. et al. Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578, 256–260 (2020). https://doi.org/10.1038/s41586-020-1980-y

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing