Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Li metal deposition and stripping in a solid-state battery via Coble creep



Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be1,2 up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals—as single crystals—can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell—consisting of approximately 1010 MIEC cylinders/solid electrolyte/LiFePO4—shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1× excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10–100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal–electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mixed ionic-electronic conductor (MIEC) tubules as 3D Li hosts.
Fig. 2: Lithium plating/stripping inside carbon tubules.
Fig. 3: Lithiophilicity from ZnOx.
Fig. 4: Electrochemical performance of scaled-up Li metal cell with about 1010 MIEC cylinders.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  2. Armstrong, R. D., Dickinson, T. & Turner, J. The breakdown of β-alumina ceramic electrolyte. Electrochim. Acta 19, 187–192 (1974).

    Article  CAS  Google Scholar 

  3. Yang, C. et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl Acad. Sci. USA 115, 3770–3775 (2018).

    Article  CAS  Google Scholar 

  4. Liu, Y. et al. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 3, eaao0713 (2017).

    Article  Google Scholar 

  5. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  CAS  Google Scholar 

  6. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  CAS  Google Scholar 

  7. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article  ADS  CAS  Google Scholar 

  8. Lu, J., Chen, Z., Pan, F., Cui, Y. & Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1, 35–53 (2018).

    Article  CAS  Google Scholar 

  9. Devaux, D. et al. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).

    Article  CAS  Google Scholar 

  10. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69 (2014).

    Article  ADS  CAS  Google Scholar 

  11. Maslyn, J. A. et al. Growth of lithium dendrites and globules through a solid block copolymer electrolyte as a function of current density. J. Phys. Chem. C 122, 26797–26804 (2018).

    Article  CAS  Google Scholar 

  12. Harry, K. J., Liao, X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).

    Article  CAS  Google Scholar 

  13. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article  CAS  Google Scholar 

  14. Kim, S. et al. Electrochemically driven mechanical energy harvesting. Nat. Commun. 7, 10146 (2016).

    Article  ADS  CAS  Google Scholar 

  15. Jin, C. et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 37, 177–186 (2017).

    Article  CAS  Google Scholar 

  16. Zhao, J. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12, 993–999 (2017).

    Article  ADS  CAS  Google Scholar 

  17. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seed growth. Nat. Energy 1, 16010 (2016).

    Article  ADS  CAS  Google Scholar 

  18. Frost, H. & Ashby, M. Deformation-Mechanism Maps (Pergamon, 1982).

  19. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  20. Nitta, N. & Yushin, G. High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part. Part. Syst. Charact. 31, 317–336 (2014).

    Article  CAS  Google Scholar 

  21. Chen, Y. et al. Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3, 152–163 (2017).

    Article  CAS  Google Scholar 

  22. Zheng, H., Liu, Y., Mao, S. X., Wang, J. & Huang, J. Y. Beam-assisted large elongation of in situ formed Li2O nanowires. Sci. Rep. 2, 542 (2012).

    Article  ADS  Google Scholar 

  23. Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  ADS  CAS  Google Scholar 

  24. Li, S. et al. Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018).

    Article  Google Scholar 

  25. Zhang, Y. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl Acad. Sci. USA 114, 3584–3589 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13, 1007–1012 (2014).

    Article  ADS  CAS  Google Scholar 

  27. Yang, Y., Kushima, A., Han, W., Xin, H. & Li, J. Liquid-like, self-healing aluminum oxide during deformation at room temperature. Nano Lett. 18, 2492–2497 (2018).

    Article  ADS  CAS  Google Scholar 

  28. Kushima, A. et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017).

    Article  CAS  Google Scholar 

  29. Moon, S. et al. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv. Mater. 25, 6547–6553 (2013).

    Article  CAS  Google Scholar 

  30. Cao, G. & Gao, H. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 103, 558–595 (2019).

    Article  CAS  Google Scholar 

  31. Yuan, Y., Amine, K., Lu, J. & Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017).

    Article  ADS  CAS  Google Scholar 

  32. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  Google Scholar 

  33. Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    Article  ADS  CAS  Google Scholar 

  34. Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988).

    Article  CAS  Google Scholar 

  35. Mali, M., Roos, J., Sonderegger, M., Brinkmann, D. & Heitjans, P. 6Li and 7Li diffusion coefficients in solid lithium measured by the NMR pulsed field gradient technique. J. Phys. F 18, 403 (1988).

    Article  ADS  CAS  Google Scholar 

  36. Xie, D.-G. et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899–903 (2015).

    Article  ADS  CAS  Google Scholar 

  37. Tian, L., Li, J., Sun, J., Ma, E. & Shan, Z-W. Visualizing size-dependent deformation mechanism transition in Sn. Sci. Rep. 3, 2113 (2013).

  38. Gjostein, N. A. Diffusion (ASM, 1973).

Download references


We acknowledge support by the Department of Energy, Basic Energy Sciences under award number DE-SC0002633 (‘Chemomechanics of far-from-equilibrium interfaces’), and by NSF ECCS-1610806. We thank KISCO Ltd for providing the PEO-based/LiTFSI solid electrolyte film.

Author information

Authors and Affiliations



The experiments were conceived and designed by Y.C., Z.W. and J.L.; Y.C. and Z.W. performed the in situ TEM experiments, TEM imaging analysis, materials characterization, and the electrochemical performance assessments; Y.C., Z.W., X.L. and X.Y. synthesized the materials; Y. L., N.W. and J.B.G. helped with the electrochemical characterization; S.Y.K. and Y.-W.M. performed the nanoindentations; Y.C., Z.W. and J.L. wrote the paper; Y.-W.M., Z.W., X.L., X.Y., C.W., W.X., D.Y., F.Y., A.K., G.Z., H.H., J.B.G. and J. L. analysed the data, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ju Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Werner Sitte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–29, a list of the Supplementary Videos and Supplementary References.

Video 1

An in situ TEM video showing Li plating inside the carbon hollow tubule with ZnOx (Fig. 2b–d).

Video 2

An in situ SAED video showing the changes of SAED on tubule region for the carbon tubule with ZnOx when Li plating occurs (Fig. 2e, f).

Video 3

An in situ TEM video showing the HRTEM imaging of Li plating inside the carbon tubule when the fresh Li crystal first forms inside the field of camera (Fig. 2g–i).

Video 4

A speeded-up in situ TEM video showing the Li stripping process inside the carbon tubule when there is a void plug between Li metal and the solid electrolyte (Fig. 2j–l and Supplementary Fig. 17).

Video 5

A speeded-up in situ TEM video showing some typical plating/stripping cycles including the 1st and 30th in the double aligned carbon tubules (Supplementary Fig. 8).

Video 6

A speeded-up in situ TEM video showing Li plating/stripping for 100 cycles in the single carbon tubules (Supplementary Fig. 10).

Video 7

A speeded-up in situ TEM video showing Na plating inside the carbon tubules (Supplementary Fig. 15).

Video 8

A speeded-up in situ TEM video showing Na stripping inside the carbon tubules (Supplementary Fig. 15).

Video 9

An in situ TEM video showing the dark-field imaging of the complete wetting of Li, spreading along the tubule outer surface with zero contact angle (Fig. 3b–f).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, Z., Li, X. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing