Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developing fibrillated cellulose as a sustainable technological material


Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: An overview of fibrillated cellulose.
Fig. 2: Fibrillated cellulose as a lightweight structural material.
Fig. 3: Fibrillated cellulose for far-term technologies.
Fig. 4: Research and industrialization opportunities.


  1. 1.

    Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). A critical review on structure–property relationships in cellulose nanomaterials.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Isogai, A. Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B 94, 161–179 (2018).

    CAS  Google Scholar 

  3. 3.

    Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). The first paper on TEMPO treatment of nanocellulose.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chen, C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020).

    ADS  CAS  Google Scholar 

  5. 5.

    Isogai, A. Present situation and future prospects of Nanocellulose R&D in Japan. In 2018 Int. Conf. Nanotechnology for Renewable Materials (18NANO) (TAPPI, 2018).

  6. 6.

    Arasto, A., Koljonen, T. & Similä, L. (eds) Growth by Integrating Bioeconomy and Low-Carbon Economy: Scenarios for Finland until 2050 (VTT Technical Research Centre of Finland, 2018);

  7. 7.

    Šturcová, A., Davies, G. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055–1061 (2005). An early report on the mechanical properties of crystalline cellulose.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mark, R. E. Cell Wall Mechanics of Tracheids (Elliots, 1967).

  9. 9.

    Dufresne, A. Nanocellulose: From Nature to High Performance Tailored Materials (Walter de Gruyter, 2017).

  10. 10.

    Trovatti, E. et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydr. Polym. 181, 256–263 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Park, H. J., Weller, C. L., Vergano, P. J. & Testin, R. F. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 58, 1361–1364 (1993).

    CAS  Google Scholar 

  12. 12.

    Mittal, N. et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mittal, N. et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11, 5148–5159 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Håkansson, K. M. O. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Torres-Rendon, J. G., Schacher, F. H., Ifuku, S. & Walther, A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 15, 2709–2717 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y. & Isogai, A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10, 162–165 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yang, X., Reid, M. S., Olsén, P. & Berglund, L. A. Eco-friendly cellulose nanofibrils designed by nature: effects from preserving native state. ACS Nano 14, 724–735 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wu, C.-N., Yang, Q., Takeuchi, M., Saito, T. & Isogai, A. Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6, 392–399 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Guan, Q.-F. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6, eaaz1114 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Benítez, A. J., Torres-Rendon, J., Poutanen, M. & Walther, A. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14, 4497–4506 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Sehaqui, H. et al. Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl. Mater. Interf. 4, 1043–1049 (2012).

    CAS  Google Scholar 

  22. 22.

    Benítez, A. J. & Walther, A. Counterion size and nature control structural and mechanical response in cellulose nanofibril nanopapers. Biomacromolecules 18, 1642–1653 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lundahl, M. J., Klar, V., Wang, L., Ago, M. & Rojas, O. J. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19 (2017).

    CAS  Google Scholar 

  25. 25.

    Yang, X. & Berglund, L. A. Water-based approach to high-strength all-cellulose material with optical transparency. ACS Sustain. Chem. Eng. 6, 501–510 (2018). An early report on high-strength all-cellulose films.

    CAS  Google Scholar 

  26. 26.

    Feng, Y., Zhang, X., Shen, Y., Yoshino, K. & Feng, W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87, 644–649 (2012).

    CAS  Google Scholar 

  27. 27.

    Zhou, Y. et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Mater. Today 30, 17–25 (2019).

    CAS  Google Scholar 

  28. 28.

    Liu, A., Walther, A., Ikkala, O., Belova, L. & Berglund, L. A. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12, 633–641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Biswas, S. K., Sano, H., Shams, Md. I. & Yano, H. Three-dimensional-moldable nanofiber-reinforced transparent composites with a hierarchically self-assembled “reverse” nacre-like architecture. ACS Appl. Mater. Interf. 9, 30177–30184 (2017).

    CAS  Google Scholar 

  30. 30.

    Wang, S. et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29, 1702498 (2017).

    Google Scholar 

  31. 31.

    Lightweight Materials for Cars and Trucks (Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, 2014).

  32. 32.

    NCV Cellulose Nano Fiber Vehicle (Ministry of the Environment, 2019).

  33. 33.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    PlasticsEurope (accessed October 2019).

  35. 35.

    Ritchie, H. & Roser, M. Plastic pollution. In Our World in Data (2018).

  36. 36.

    Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    ADS  CAS  Google Scholar 

  37. 37.

    Thakur, S. et al. Sustainability of bioplastics: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 13, 68–75 (2018).

    Google Scholar 

  38. 38.

    Coughlan, M. P. Mechanisms of cellulose degradation by fungi and bacteria. Anim. Feed Sci. Technol. 32, 77–100 (1991).

    CAS  Google Scholar 

  39. 39.

    Wang, S., Lu, A. & Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016).

    CAS  Google Scholar 

  40. 40.

    Holland, C., Vollrath, F., Ryan, A. J. & Mykhaylyk, O. O. Silk and synthetic polymers: reconciling 100 degrees of separation. Adv. Mater. 24, 105–109 (2012).

    CAS  Google Scholar 

  41. 41.

    Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T. & Goswami, S. Commercial application of cellulose nano-composites—a review. Biotechnol. Rep. 21, e00316 (2019).

    Google Scholar 

  42. 42.

    Cowie, J., Bilek, E. T., Wegner, T. H. & Shatkin, J. A. Market projections of cellulose nanomaterial-enabled products. Part 2: Volume estimates. TAPPI J. 13, 57–69 (2014).

    CAS  Google Scholar 

  43. 43.

    Babu, R. P., O’Connor, K. & Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 8 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wang, Q. Q. et al. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19, 2033–2047 (2012).

    CAS  Google Scholar 

  45. 45.

    Chen, L., Zhu, J. Y., Baez, C., Kitin, P. & Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18, 3835–3843 (2016). An original report on the fabrication cellulose nanocrystals and nanofibres using concentrated organic acids.

    CAS  Google Scholar 

  46. 46.

    Yarbrough, J. M. et al. Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11, 3101–3109 (2017).

    CAS  Google Scholar 

  47. 47.

    Zhou, H., St John, F. & Zhu, J. Y. Xylanase pretreatment of wood fibers for producing cellulose nanofibrils: a comparison of different enzyme preparations. Cellulose 26, 543–555 (2019).

    CAS  Google Scholar 

  48. 48.

    Hata, Y., Sawada, T., Sakai, T. & Serizawa, T. Enzyme-catalyzed bottom-up synthesis of mechanically and physicochemically stable cellulose hydrogels for spatial immobilization of functional colloidal particles. Biomacromolecules 19, 1269–1275 (2018).

    CAS  Google Scholar 

  49. 49.

    Koskela, S. et al. Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Green Chem. 21, 5924–5933 (2019).

    CAS  Google Scholar 

  50. 50.

    Kracher, D. et al. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352, 1098–1101 (2016).

    ADS  CAS  Google Scholar 

  51. 51.

    Nogi, M., Iwamoto, S., Nakagaito, A. N. & Yano, H. Optically transparent nanofiber paper. Adv. Mater. 21, 1595–1598 (2009). An early report on cellulose-nanofibre-based transparent paper.

    CAS  Google Scholar 

  52. 52.

    Fang, Z. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14, 765–773 (2014).

    ADS  CAS  Google Scholar 

  53. 53.

    Hsieh, M.-C., Koga, H., Suganuma, K. & Nogi, M. Hazy transparent cellulose nanopaper. Sci. Rep. 7, 41590 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Lin, C. et al. Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose 26, 4061–4069 (2019).

    CAS  Google Scholar 

  55. 55.

    Nogi, M. et al. High thermal stability of optical transparency in cellulose nanofiber paper. Appl. Phys. Lett. 102, 181911 (2013).

    ADS  Google Scholar 

  56. 56.

    Ifuku, S. et al. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007).

    CAS  Google Scholar 

  57. 57.

    Zhu, H. et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369–1377 (2016).

    CAS  Google Scholar 

  58. 58.

    Toivonen, M. S. et al. Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv. Mater. 30, 1704050 (2018). A recent report on the mechanism of the tunable optical whiteness of cellulose nanofibre films.

    Google Scholar 

  59. 59.

    Liang, H.-L. et al. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat. Commun. 9, 4632 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Wang, J. et al. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6, 49–70 (2018).

    CAS  Google Scholar 

  61. 61.

    Liu, Q. et al. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 48, 266–274 (2018). A recent report on thermally insulating and transparent cellulose films.

    CAS  Google Scholar 

  62. 62.

    Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Lv, T., Huang, J., Liu, W. & Zhang, R. From sky back to sky: embedded transparent cellulose membrane to improve the thermal performance of solar module by radiative cooling. Case Studies Therm. Eng. 18, 100596 (2020).

    Google Scholar 

  64. 64.

    Okahisa, Y., Yoshida, A., Miyaguchi, S. & Yano, H. Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos. Sci. Technol. 69, 1958–1961 (2009).

    CAS  Google Scholar 

  65. 65.

    Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    World Health Organization 2.1 Billion People Lack Safe Drinking Water At Home, More Than Twice As Many Lack Safe Sanitation. (WHO, 2017).

  67. 67.

    Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019). An original report on highly conductive cellulose nanostructures for thermal energy harvesting.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Karim, Z., Mathew, A. P., Kokol, V., Wei, J. & Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv. 6, 20644–20653 (2016).

    ADS  CAS  Google Scholar 

  69. 69.

    Voisin, H., Bergström, L., Liu, P. & Mathew, A. Nanocellulose-based materials for water purification. Nanomaterials 7, 57 (2017).

    Google Scholar 

  70. 70.

    Kim, S.-H. et al. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 11, 321–330 (2018).

    CAS  Google Scholar 

  71. 71.

    Kim, J.-H. et al. Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177–186 (2019).

    CAS  Google Scholar 

  72. 72.

    Li, T. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Jiang, Q. et al. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28, 9400–9407 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Mohammed, N., Grishkewich, N. & Tam, K. C. Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano 5, 623–658 (2018).

    CAS  Google Scholar 

  75. 75.

    Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R. M. Microbial cellulose—the natural power to heal wounds. Biomaterials 27, 145–151 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hickey, R. J. & Pelling, A. E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 7, 45 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Sun, B. et al. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 26, 2485–2501 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Yamada, K., Shibata, H., Suzuki, K. & Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17, 1206–1249 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    An, B. W., Heo, S., Ji, S., Bien, F. & Park, J.-U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Zhao, D. et al. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403 (2020).

    Google Scholar 

  81. 81.

    Czaja, W. K., Young, D. J., Kawecki, M. & Brown, R. M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Shoseyov, O. et al. Nanocellulose composite biomaterials in industry and medicine. In Extracellular Sugar-Based Biopolymers Matrices (eds Cohen, E. & Merzendorfer, H.) Vol. 12, 693–784 (Springer, 2019).

  83. 83.

    Scherner, M. et al. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J. Surg. Res. 189, 340–347 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ajdary, R., Tardy, B. L., Mattos, B. D., Bai, L. & Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 2001085 (2020).

  85. 85.

    UPM Biomedicals

  86. 86.

    Greca, L. G., Lehtonen, J., Tardy, B. L., Guo, J. & Rojas, O. J. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Mater. Horiz. 5, 408–415 (2018). An original report on the synthesis of three-dimensional nanocellulose structures.

    CAS  Google Scholar 

  87. 87.

    Ajdary, R. et al. Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds. Biomacromolecules 20, 2770–2778 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Huan, S. et al. Two-phase emulgels for direct ink writing of skin-bearing architectures. Adv. Funct. Mater. 29, 1902990 (2019).

    Google Scholar 

  89. 89.

    Drachuk, I. et al. Immobilization of recombinant E. coli cells in a bacterial cellulose–silk composite matrix to preserve biological function. ACS Biomater. Sci. Eng. 3, 2278–2292 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Sun, M., Wang, Y., Shi, L. & Klemeš, J. J. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: a systematic review and meta-analysis. Renew. Sustain. Energy Rev. 92, 823–833 (2018). A critical review summarizing the energy use, carbon emissions and environmental impact of the pulp and paper industry.

    Google Scholar 

  91. 91.

    Ma, X. et al. Energy and carbon coupled water footprint analysis for straw pulp paper production. J. Clean. Prod. 233, 23–32 (2019).

    CAS  Google Scholar 

  92. 92.

    Wang, J., Tavakoli, J. & Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—a review. Carbohydr. Polym. 219, 63–76 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Shoda, M. & Sugano, Y. Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1 (2005).

    CAS  Google Scholar 

  94. 94.

    Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014).

    CAS  Google Scholar 

  95. 95.

    Lin, D., Liu, Z., Shen, R., Chen, S. & Yang, X. Bacterial cellulose in food industry: current research and future prospects. Int. J. Biol. Macromol. 158, 1007–1019 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Rol, F. et al. Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain. Chem. Eng. 5, 6524–6531 (2017).

    CAS  Google Scholar 

  97. 97.

    Hu, W. et al. Protonation process to enhance the water resistance of transparent and hazy paper. ACS Sustain. Chem. Eng. 6, 12385–12392 (2018).

    CAS  Google Scholar 

  98. 98.

    Jiang, B. et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv. Funct. Mater. 30, 1906307 (2020).

    CAS  Google Scholar 

  99. 99.

    Hubbe, M. A. Paper’s resistance to wetting—a review of internal sizing chemicals and their effects. BioResources 2, 106–145 (2007).

    Google Scholar 

  100. 100.

    Isogai, A., Hänninen, T., Fujisawa, S. & Saito, T. Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 86, 122–148 (2018).

    CAS  Google Scholar 

  101. 101.

    Rorrer, N. A. et al. Renewable unsaturated polyesters from muconic acid. ACS Sustain. Chem. Eng. 4, 6867–6876 (2016).

    CAS  Google Scholar 

  102. 102.

    Inglis, A. J., Nebhani, L., Altintas, O., Schmidt, F. G. & Barner-Kowollik, C. Rapid bonding/debonding on demand: reversibly cross-linked functional polymers via Diels−Alder chemistry. Macromolecules 43, 5515–5520 (2010).

    ADS  CAS  Google Scholar 

  103. 103.

    Ghanadpour, M., Carosio, F., Larsson, P. T. & Wågberg, L. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 16, 3399–3410 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Qin, S. et al. Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6, 1801424 (2019).

    Google Scholar 

  105. 105.

    Mohamed, A. L. & Hassabo, A. G. Flame retardant of cellulosic materials and their composites. In Flame Retardants: Polymer Blends, Composites and Nanocomposites (eds Visakh, P. M. & Arao, Y.) 247–314 (Springer, 2015).

  106. 106.

    Carosio, F., Kochumalayil, J., Fina, A. & Berglund, L. A. Extreme thermal shielding effects in nanopaper based on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix. Adv. Mater. Interf. 3, 1600551 (2016).

    Google Scholar 

  107. 107.

    Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G. & Berglund, L. Oriented clay nanopaper from biobased components—mechanisms for superior fire protection properties. ACS Appl. Mater. Interf. 7, 5847–5856 (2015).

    CAS  Google Scholar 

  108. 108.

    Gan, W. et al. Dense, self-formed char layer enables a fire-retardant wood structural material. Adv. Funct. Mater. 29, 1807444 (2019).

    Google Scholar 

  109. 109.

    Thoorens, G., Krier, F., Leclercq, B., Carlin, B. & Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int. J. Pharm. 473, 64–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Bai, L. et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals. 2. In vitro lipid digestion. Food Hydrocoll. 96, 709–716 (2019).

    CAS  Google Scholar 

  111. 111.

    Lin, K. W. & Lin, H. Y. Quality characteristics of Chinese-style meatball containing bacterial cellulose (nata). J. Food Sci. 69, SNQ107–SNQ111 (2004).

    CAS  Google Scholar 

  112. 112.

    Ong, K. J., Shatkin, J. A., Nelson, K., Ede, J. D. & Retsina, T. Establishing the safety of novel bio-based cellulose nanomaterials for commercialization. NanoImpact 6, 19–29 (2017). A recent report on the development of a safety testing plan for lignin-coated cellulose nanofibre and nanocrystals.

    Google Scholar 

  113. 113.

    Zhou, B., Fu, M., Xie, J., Yang, X. & Li, Z. Ecological functions of bamboo forest: research and application. J. For. Res. 16, 143–147 (2005).

    Google Scholar 

  114. 114.

    Yu, Y., Wang, H., Lu, F., Tian, G. & Lin, J. Bamboo fibers for composite applications: a mechanical and morphological investigation. J. Mater. Sci. 49, 2559–2566 (2014).

    ADS  CAS  Google Scholar 

  115. 115.

    Klein, B. C., Sampaio, I. L. de M., Mantelatto, P. E., Filho, R. M. & Bonomi, A. Beyond ethanol, sugar, and electricity: a critical review of product diversification in Brazilian sugarcane mills. Biofuels Bioprod. Biorefin. 13, 809–821 (2019).

    CAS  Google Scholar 

  116. 116.

    Imani, M. et al. Coupling nanofibril lateral size and residual lignin to tailor the properties of lignocellulose films. Adv. Mater. Interf. 6, 1900770 (2019).

    CAS  Google Scholar 

  117. 117.

    Stone, J. E. & Scallan, A. M. Effect of component removal upon the porous structure of the cell wall of wood. J. Polym. Sci. C 11, 13–25 (1965).

    Google Scholar 

  118. 118.

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Henn, A. R. & Fraundorf, P. B. A quantitative measure of the degree of fibrillation of short reinforcing fibres. J. Mater. Sci. 25, 3659–3663 (1990).

    ADS  CAS  Google Scholar 

  120. 120.

    Zhu, H. et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Wang, Q. Q. et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19, 1631–1643 (2012).

    CAS  Google Scholar 

  122. 122.

    Zhu, H. et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl Acad. Sci. USA 112, 8971–8976 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Redefining bioeconomy. FinnCERES

  124. 124.

    La Notte, L. et al. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Mater. Today Energy 7, 105–112 (2018).

    Google Scholar 

Download references

Author information




L.H. conceived the paper. L.H., T.L. and C.C. researched the data and drafted the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Liangbing Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Xingye An, Andreas Walther and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, T., Chen, C., Brozena, A.H. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing