Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seasonal origin of the thermal maxima at the Holocene and the last interglacial

This article has been updated


Proxy reconstructions from marine sediment cores indicate peak temperatures in the first half of the last and current interglacial periods (the thermal maxima of the Holocene epoch, 10,000 to 6,000 years ago, and the last interglacial period, 128,000 to 123,000 years ago) that arguably exceed modern warmth1,2,3. By contrast, climate models simulate monotonic warming throughout both periods4,5,6,7. This substantial model–data discrepancy undermines confidence in both proxy reconstructions and climate models, and inhibits a mechanistic understanding of recent climate change. Here we show that previous global reconstructions of temperature in the Holocene1,2,3 and the last interglacial period8 reflect the evolution of seasonal, rather than annual, temperatures and we develop a method of transforming them to mean annual temperatures. We further demonstrate that global mean annual sea surface temperatures have been steadily increasing since the start of the Holocene (about 12,000 years ago), first in response to retreating ice sheets (12 to 6.5 thousand years ago), and then as a result of rising greenhouse gas concentrations (0.25 ± 0.21 degrees Celsius over the past 6,500 years or so). However, mean annual temperatures during the last interglacial period were stable and warmer than estimates of temperatures during the Holocene, and we attribute this to the near-constant greenhouse gas levels and the reduced extent of ice sheets. We therefore argue that the climate of the Holocene differed from that of the last interglacial period in two ways: first, larger remnant glacial ice sheets acted to cool the early Holocene, and second, rising greenhouse gas levels in the late Holocene warmed the planet. Furthermore, our reconstructions demonstrate that the modern global temperature has exceeded annual levels over the past 12,000 years and probably approaches the warmth of the last interglacial period (128,000 to 115,000 years ago).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Application of SAT method at IODP Site U1485.
Fig. 2: Regional seasonal and mean annual temperature reconstructions.
Fig. 3: Holocene warming driven by retreating ice sheets and rising greenhouse gases.
Fig. 4: Evolution and drivers of Holocene and LIG SST.

Data availability

The datasets generated and compiled for this study are available in the NOAA Database, World Data Service for Paleoclimatology at International Comprehensive Ocean-Atmosphere Data Set data were provided by the National Oceanic and Atmospheric Administration/Oceanic and Atmospheric Research/Earth System Research Laboratories Physical Sciences Laboratory at data are provided with this paper.

Code availability

A MATLAB code that implements the SAT method is available on GitHub (

Change history

  • 01 February 2021

    This Article was amended to correct the Peer review information, which was originally incorrect.


  1. 1.

    Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Kaufman, D. et al. A global database of Holocene paleotemperature records. Sci. Data 7, 183 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  4. 4.

    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  5. 5.

    Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations. Clim. Past Discuss. 2020, 1–35 (2020).

    Google Scholar 

  6. 6.

    Varma, V., Prange, M. & Schulz, M. Transient simulations of the present and the last interglacial climate using the Community Climate System Model version 3: effects of orbital acceleration. Geosci. Model Dev. 9, 3859–3873 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Lu, Z., Liu, Z., Chen, G. & Guan, J. Prominent precession band variance in ENSO intensity over the last 300,000 years. Geophys. Res. Lett. 46, 9786–9795 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Hoffman, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9.

    Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10.

    PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

    ADS  CAS  PubMed Central  Article  Google Scholar 

  11. 11.

    Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  12. 12.

    Rodriguez, L. G. et al. Mid-Holocene, coral-based sea surface temperatures in the western tropical Atlantic. Paleoceanogr. Paleoclimatol. 34, 1234–1245 (2019).

    ADS  Article  Google Scholar 

  13. 13.

    Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific. Paleoceanogr. Paleoclimatol. 29, 680–696 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 29, 989–1004 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W. & Seo, K.-H. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Sci. Adv. 5, eaax8203 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Affolter, S. et al. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Martin, C. et al. Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe (Massif Central, France). Quat. Sci. Rev. 228, (2020).

  19. 19.

    Longo, W. M. et al. Insolation and greenhouse gases drove Holocene winter and spring warming in Arctic Alaska. Quat. Sci. Rev. 242, 106438 (2020).

    Article  Google Scholar 

  20. 20.

    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A. 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Huybers, P. & Eisenman, I. (eds) NOAA/NCDC Paleoclimatology Program, (IGBP PAGES/World Data Center for Paleoclimatology, 2006).

  22. 22.

    Berger, A. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    ADS  Article  Google Scholar 

  23. 23.

    Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).

    Article  Google Scholar 

  24. 24.

    Be, A. & Hamilton, W. H. Ecology of recent planktonic foraminifera. Micropaleontology 13, 87–106 (1967).

    Article  Google Scholar 

  25. 25.

    De Deckker, P. The Indo-Pacific warm pool: critical to world oceanography and world climate. Geosci. Lett. 3, 20 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Moffa-Sanchez, P., Rosenthal, Y., Babila, T. L., Mohtadi, M. & Zhang, X. Temperature evolution of the Indo-Pacific warm pool over the Holocene and the last deglaciation. Paleoceanogr. Paleoclimatol. 34, 1107–1123 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Ruddiman, W., He, F., Vavrus, S. & Kutzbach, J. The early anthropogenic hypothesis: a review. Quat. Sci. Rev. 240, 106386 (2020).

    Article  Google Scholar 

  28. 28.

    Studer, A. S. et al. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat. Geosci. 11, 756–760 (2018).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Pausata, F. S. R. et al. The greening of the Sahara: past changes and future implications. One Earth 2, 235–250 (2020).

    Article  Google Scholar 

  31. 31.

    Ritchie, J. C., Cwynar, L. C. & Spear, R. W. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305, 126–128 (1983).

    ADS  Article  Google Scholar 

  32. 32.

    McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. P. & Zander, P. D. The onset and rate of Holocene neoglacial cooling in the Arctic. Geophys. Res. Lett. 45, 12487–12496 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the Ice Ages. Science 194, 1121–1132 (1976).

    ADS  CAS  PubMed  Article  Google Scholar 

  34. 34.

    Milankovitch, M. Kanon Der Erdbestrahlung Und Seine Anwendung Auf Das Eiszeitenproblem (Mihaila Ćurčića, 1941).

  35. 35.

    Imbrie, J. et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanogr. Paleoclimatol. 7, 701–738 (1992).

    ADS  Article  Google Scholar 

  36. 36.

    Wang, P. X. et al. The global monsoon across time scales: mechanisms and outstanding issues. Earth Sci. Rev. 174, 84–121 (2017).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Clark, P. U. et al. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature 577, 660–664 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  38. 38.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  39. 39.

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  40. 40.

    Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Rafter, P. A., Herguera, J.-C. & Southon, J. R. Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core. Clim. Past 14, 1977–1989 (2018).

    Article  Google Scholar 

  42. 42.

    Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P. & Sarmiento, J. L. The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean. Glob. Biogeochem. Cycles 29, 307–324 (2015).

    ADS  CAS  Article  Google Scholar 

  43. 43.

    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C 57, 399–418 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, (2005).

  45. 45.

    Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial‐scale events 64,000–24,000 years ago. Paleoceanogr. Paleoclimatol. 15, 565–569 (2000).

    ADS  Article  Google Scholar 

  46. 46.

    Rosenthal, Y., Boyle, E. A. & Slowey, N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta 61, (1997).

  47. 47.

    Rosenthal, Y., Field, M. P. & Sherrell, R. M. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 71, 3248–3253 (1999).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Rosenthal, Y., Holbourn, A. E., Kulhanek, D. K. & Expedition 363 Scientists. Western Pacific Warm Pool. In Proc. IODP Vol. 363, (International Ocean Discovery Program, 2018).

  49. 49.

    Minoshima, K., Kawahata, H. & Ikehara, K. Changes in biological production in the mixed water region (MWR) of the northwestern North Pacific during the last 27 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 430–447 (2007).

    Article  Google Scholar 

  50. 50.

    Bard, E. et al. Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328, 791–794 (1987).

    ADS  Article  Google Scholar 

  51. 51.

    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 1321–1324 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  52. 52.

    Martrat, B. et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  53. 53.

    Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rampen, S. W., Schouten, S. & Sinninghe Damsté, J. S. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: a dual-organic proxy (UK′37 and LDI) approach. Paleoceanogr. Paleoclimatol. 29, 87–98 (2014).

    ADS  Article  Google Scholar 

  54. 54.

    Cacho, I. et al. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanogr. Paleoclimatol. 14, 698–705 (1999).

    ADS  Article  Google Scholar 

  55. 55.

    Isono, D. et al. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. Geology 37, 591–594 (2009).

    ADS  Article  Google Scholar 

  56. 56.

    Yamamoto, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quat. Sci. Rev. 26, 405–414 (2007).

    ADS  Article  Google Scholar 

  57. 57.

    Herbert, T. D. et al. Collapse of the California Current during glacial maxima linked to climate change on land. Science 293, 71–76 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  58. 58.

    Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R. & Lourens, L. J. Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events. Nat. Geosci. 1, 601–605 (2008).

    ADS  CAS  Article  Google Scholar 

  59. 59.

    Schmidt, M. W., Weinlein, W. A., Marcantonio, F. & Lynch-Stieglitz, J. Solar forcing of Florida Straits surface salinity during the early Holocene. Paleoceanogr. Paleoclimatol. 27, (2012).

  60. 60.

    Zhao, M., Beveridge, N. A. S., Shackleton, N. J., Sarnthein, M. & Eglinton, G. Molecular stratigraphy of cores off northwest Africa: sea surface temperature history over the last 80 Ka. Paleoceanogr. Paleoclimatol. 10, 661–675 (1995).

    ADS  Article  Google Scholar 

  61. 61.

    Schmidt, M. W., Spero, H. J. & Lea, D. W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, 160–163 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  62. 62.

    Schmidt, M. W. et al. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. Proc. Natl Acad. Sci. USA 109, 14348–14352 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  63. 63.

    Lea, D. W., Pak, D. K., Peterson, L. C. & Hughen, K. A. Synchroneity of tropical and high-latitude Atlantic tmperatures over the Last Glacial Termination. Science 301, 1361–1364 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  64. 64.

    de Garidel-Thoron, T., Beaufort, L., Linsley, B. K. & Dannenmann, S. Millennial-scale dynamics of the east Asian winter monsoon during the last 200,000 years. Paleoceanogr. Paleoclimatol. 16, 491–502 (2001).

    ADS  Article  Google Scholar 

  65. 65.

    Rosenthal, Y., Oppo, D. W. & Linsley, B. K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophys. Res. Lett. 30, (2003).

  66. 66.

    Zhao, M., Huang, C.-Y., Wang, C.-C. & Wei, G. A millennial-scale U37K′ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 39–55 (2006).

    Article  Google Scholar 

  67. 67.

    Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M. & Wang, L. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanogr. Paleoclimatol. 14, 224–231 (1999).

    ADS  Article  Google Scholar 

  68. 68.

    Benway, H. M., Mix, A. C., Haley, B. A. & Klinkhammer, G. P. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr. Paleoceanogr. Paleoclimatol. 21, (2006).

  69. 69.

    Dubois, N., Kienast, M., Normandeau, C. & Herbert, T. D. Eastern equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry. Paleoceanogr. Paleoclimatol. 24, (2009).

  70. 70.

    Bolliet, T. et al. Mindanao Dome variability over the last 160 kyr: episodic glacial cooling of the West Pacific Warm Pool. Paleoceanogr. Paleoclimatol. 26, (2011).

  71. 71.

    Kienast, M., Steinke, S., Stattegger, K. & Calvert, S. E. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291, 2132–2134 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  72. 72.

    Fan, W. et al. Variability of the Indonesian throughflow in the Makassar Strait over the last 30 ka. Sci. Rep. 8, 5678 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 years of west African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  74. 74.

    Weldeab, S., Schneider, R. R., Kölling, M. & Wefer, G. Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 33, 981–984 (2005).

    ADS  CAS  Article  Google Scholar 

  75. 75.

    Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719–1724 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  76. 76.

    Lea, D. W. et al. Paleoclimate history of Galápagos surface waters over the last 135,000yr. Quat. Sci. Rev. 25, 1152–1167 (2006).

    ADS  Article  Google Scholar 

  77. 77.

    Pena, L. D., Cacho, I., Ferretti, P. & Hall, M. A. El Niño–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections. Paleoceanogr. Paleoclimatol. 23, (2008).

  78. 78.

    Schröder, J. F., Holbourn, A., Kuhnt, W. & Küssner, K. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr. Quat. Sci. Rev. 154, 143–156 (2016).

    ADS  Article  Google Scholar 

  79. 79.

    Linsley, B. K., Rosenthal, Y. & Oppo, D. W. Holocene evolution of the Indonesian throughflow and the western Pacific Warm Pool. Nat. Geosci. 3, 578–583 (2010).

    ADS  CAS  Article  Google Scholar 

  80. 80.

    Bova, S. C. et al. Links between eastern equatorial Pacific stratification and atmospheric CO2 rise during the last deglaciation. Paleoceanogr. Paleoclimatol. 30, 1407–1424 (2015).

    ADS  Article  Google Scholar 

  81. 81.

    Arz, H. W., Pätzold, J. & Wefer, G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quat. Res. 50, 157–166 (1998).

    CAS  Article  Google Scholar 

  82. 82.

    Weldeab, S., Schneider, R. R. & Kölling, M. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. Earth Planet. Sci. Lett. 241, 699–706 (2006).

    ADS  CAS  Article  Google Scholar 

  83. 83.

    Visser, K., Thunell, R. & Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421, 152–155 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  84. 84.

    Lückge, A. et al. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300,000 years. Paleoceanogr. Paleoclimatol. 24, (2009).

  85. 85.

    Gibbons, F. T. et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian oceans. Earth Planet. Sci. Lett. 387, 240–251 (2014).

    ADS  CAS  Article  Google Scholar 

  86. 86.

    Xu, J., Holbourn, A., Kuhnt, W., Jian, Z. & Kawamura, H. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II. Earth Planet. Sci. Lett. 273, 152–162 (2008).

    ADS  CAS  Article  Google Scholar 

  87. 87.

    Lawrence, K. T. & Herbert, T. D. Late Quaternary sea-surface temperatures in the western Coral Sea: implications for the growth of the Australian Great Barrier Reef. Geology 33, 677–680 (2005).

    ADS  Article  Google Scholar 

  88. 88.

    Lopes dos Santos, R. A. et al. Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia. Nat. Geosci. 6, 627–631 (2013).

    ADS  CAS  Article  Google Scholar 

  89. 89.

    Lopes dos Santos, R. A. et al. Comparison of organic (U37, TEXH86, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia. Paleoceanogr. Paleoclimatol. 28, 377–387 (2013).

    ADS  Article  Google Scholar 

  90. 90.

    Pahnke, K. & Sachs, J. P. Sea surface temperatures of southern midlatitudes 0–160 kyr B.P. Paleoceanogr. Paleoclimatol. 21, (2006).

  91. 91.

    Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanogr. Paleoclimatol. 18, (2003).

  92. 92.

    Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatol. 34, 2005–2030 (2019).

    ADS  Article  Google Scholar 

  93. 93.

    Gray, W. R. & Evans, D. Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 34, 306–315 (2019).

    ADS  Article  Google Scholar 

  94. 94.

    Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303–2310 (1988).

    ADS  CAS  Article  Google Scholar 

  95. 95.

    Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    ADS  Article  Google Scholar 

  96. 96.

    Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 14, 853–871 (2001).

    ADS  Article  Google Scholar 

  97. 97.

    Yeager, S. G., Shields, C. A., Large, W. G. & Hack, J. J. The low-resolution CCSM3. J. Clim. 19, 2545–2566 (2006).

    ADS  Article  Google Scholar 

  98. 98.

    Timmermann, A., Lorenz, S. J., An, S.-I., Clement, A. & Xie, S.-P. The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Clim. 20, 4147–4159 (2007).

    ADS  Article  Google Scholar 

  99. 99.

    Delcroix, T. et al. Sea surface temperature and salinity seasonal changes in the western Solomon and Bismarck seas. J. Geophys. Res. Oceans 119, 2642–2657 (2014).

    ADS  Article  Google Scholar 

  100. 100.

    Palmer, M. R. & Pearson, P. N. A. 23,000-year record of surface water pH and pCO2 in the western equatorial Pacific Ocean. Science 300, 480–482 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  101. 101.

    Sikes, E. L., O’Leary, T., Nodder, S. D. & Volkman, J. K. Alkenone temperature records and biomarker flux at the subtropical front on the Chatham Rise, SW Pacific Ocean. Deep Sea Res. Part I 52, 721–748 (2005).

    ADS  CAS  Article  Google Scholar 

  102. 102.

    King, A. L. & Howard, W. Planktonic foraminiferal δ13C records from Southern Ocean sediment traps: new estimates of the oceanic Suess Effect. Glob. Biogeochem. Cycles 18, GB2007 (2004).

    ADS  Article  CAS  Google Scholar 

  103. 103.

    Park, E. M. Variations In GDGT Flux And TEX Thermometry In Three Distinct Oceanic Regimes Of The Atlantic Ocean: A Sediment Trap Study. PhD thesis, University of Bremen (2019).

  104. 104.

    Amante, C. & Eakins, B. W. ETOPO1 Global Relief Model Converted To PanMap Layer Format. (NOAA-National Geophysical Data Center, PANGAEA, 2009).

  105. 105.

    Emile-Geay, J., McKay, N. P., Wang, J. & Anchukaitis, K. J. CommonClimate/PAGES2k_phase2 code: first public release (2017).

Download references


This research used samples and data provided by the International Ocean Discovery Program (IODP). We thank the science party, technical staff and crew of IODP Expedition 363, who together ensured the successful recovery of IODP Site U1485. Funding for this research was provided by NSF grants OCE-1834208 and OCE-1810681, the NSF-sponsored US Science Support Program for IODP, the Institute of Earth, Ocean, and Atmospheric Sciences at Rutgers University, the Chinese NSF (grant NSFC41630527), Chinese MOST (grant 2017YFA0603801), the School of Geography, Nanjing Normal University and the USIEF-Fulbright Program.

Author information




S.B. and Y.R. derived the empirical form of the SAT method. S.B. compiled and analysed the proxy datasets and wrote the first manuscript draft. S.B. and S.P.G. collected the geochemical data from Site U1485 under the supervision of Y.R. Z.L. and M.Y. provided access to and interpretation of model results, and the theory explaining the SAT method. All authors provided review and editing.

Corresponding author

Correspondence to Samantha Bova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jeroen Groeneveld, Jennifer Hertzberg, Feng Zhu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Location map of IODP Site U1485.

Bathymetric map of the northern margin of Papua New Guinea showing the location of IODP Site U1485 (yellow circle)48,104. Contour interval is 500 m. Map constructed using the M_Map software package for MATLAB.

Extended Data Fig. 2 Age–depth model for Holocene and Termination I section of IODP Site U1485.

a, Reservoir age estimates calculated by measuring co-occurring wood and G. ruber 14C ages and subtracting the wood 14C age from planktic foraminifer 14C age. Twelve reservoir age estimates were deemed outliers (see Methods) and are not shown. Shading represents 2σ error estimate. b, Final age model for the upper 27.5 m CCSF-A of Site U1485 constructed using the Bchron age modelling software package for R43. Sedimentation across the Holocene is approximately constant at a rate of 62 cm kyr−1. Shading represents the 3σ error estimate. The red square indicates an outlying 14C date that is not included in the final age model.

Extended Data Fig. 3 Age–depth model for LIG and Termination II section of IODP Site U1485.

Benthic foraminiferal δ18O record from Site U1485 (blue) measured on Cibicidoides pachyderma (>212 μm) plotted with the LR04 benthic stack (black)44 and the benthic foraminifer δ18O record from Site MD95-2042 from the Iberian Margin (purple)45. Dashed lines show tie points used to define age control for the LIG and Termination II section of Site U1485. Depth scale for Site U1485 is CCSF-A. Foraminiferal δ18O for Site U1485 and MD95-2042 are reported relative to the Pee Dee belemnite (PDB) standard.

Extended Data Fig. 4 Mg/Ca-temperature calibration comparison at IODP Site U1485.

a, d, SSTSN records based on the three different calibrations of Anand et al.91, Gray and Evans93 and Tierney et al.92 (BAYMAG) for the LGM-HL and MIS 6-5 intervals; b, e, same plotted as SST anomalies; c, f, calculated mean annual SST anomalies.

Extended Data Fig. 5 SAT method insensitivity to insolation window length.

Application of the SAT method to Mg/Ca SSTSN from Site U1485 (ad) and October SSTs from the CCSM3 accelerated model simulation (eh)7. MASST is estimated by regressing seasonal SSTs with insolation averaged over a range of window lengths, from 30 to 270 days, with the same central 30-day interval. Widening the window length changes the slope of the regression between insolation and seasonal SST (d, h) but has a negligible impact on the SAT calculated MASST anomalies. Shaded region in b reflects the 2 s.e. uncertainty.

Extended Data Fig. 6 Locations and temporal availability of proxy records.

a, Map of SST records used in this study showing proxy type and whether the site has a LIG section. See Extended Data Table 1 for a list of records and their citations. b, c, Temporal availability of records over the Holocene and LIG intervals, respectively. Figure constructed using MATLAB and code from Emile-Geay et al.105.

Extended Data Fig. 7 Map of proxy seasonal bias.

Map of SST records used in this study showing the month of best fit between LIG SSTSN and insolation closest to the 30-day window identified using the SAT method. See Extended Data Table 1 for a list of records included. Figure constructed using MATLAB and code from Emile-Geay et al.105.

Extended Data Fig. 8 Application of SAT method to model seasonal SSTs from core locations in the Eastern Equatorial Pacific (EEP), Southern Hemisphere extratropics, Northern Hemisphere extratropics, and tropical Atlantic.

ad, Proxy SSTSN anomalies plotted with SSTSN output from the nearest grid cell in the CCSM3 accelerated model simulation. eh, SAT method MASST (blue) calculated from model SSTSN data shown in ad plotted with the actual model MASST data (black) for each location. All SST anomalies in this figure are calculated relative to values averaged between 115 ka and 116 ka.

Extended Data Table 1 Records included in SST stacks

Supplementary information

Supplementary Methods

This file contains theoretical derivation of the SAT method and its properties.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bova, S., Rosenthal, Y., Liu, Z. et al. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing