Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan

Abstract

Among extant vertebrates, mammals are distinguished by having a chain of three auditory ossicles (the malleus, incus and stapes) that transduce sound waves and promote an increased range of audible—especially high—frequencies1. By contrast, the homologous bones in early fossil mammals and relatives also functioned in chewing through their bony attachments to the lower jaw2. Recent discoveries of well-preserved Mesozoic mammals have provided glimpses into the transition from the dual (masticatory and auditory) to the single auditory function for the ossicles, which is now widely accepted to have occurred at least three times in mammal evolution3,4,5,6. Here we report a skull and postcranium that we refer to the haramiyidan Vilevolodon diplomylos (dating to the Middle Jurassic epoch (160 million years ago)) and that shows excellent preservation of the malleus, incus and ectotympanic (which supports the tympanic membrane). After comparing this fossil with other Mesozoic and extant mammals, we propose that the overlapping incudomallear articulation found in this and other Mesozoic fossils, in extant monotremes and in early ontogeny in extant marsupials and placentals is a morphology that evolved in several groups of mammals in the transition from the dual to the single function for the ossicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three types of middle ear in mammaliaforms.
Fig. 2: Vilevolodon diplomylos (IMMNH-PV01699A).
Fig. 3: The incudomallear articulation across Mammaliaformes.

Similar content being viewed by others

Data availability

The specimen (IMMNH-PV01699) studied here has been deposited in the Inner Mongolia Museum of Natural History. The data matrix for the phylogenetic analysis is deposited in MorphoBank (project number 3760); computed tomography data are deposited in MorphoSource at https://doi.org/10.17602/M2/M167344.

Code availability

The Batch commands for the Bayesian analysis are included in the Supplementary Information.

References

  1. Manley, G. A. & Sienknecht, U. J. in The Middle Ear: Science, Otosurgery and Technology (eds Puria, S. et al.) 7–30 (Springer, 2013).

  2. Allin, E. F. & Hopson, J. A. in The Evolutionary Biology of Hearing (eds Webster, D. B. et al.) 587–614 (Springer, 1992).

  3. Han, G., Mao, F., Bi, S., Wang, Y. & Meng, J. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature 551, 451–456 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Luo, Z.-X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548, 326–329 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Wang, H., Meng, J. & Wang, Y. Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature 576, 102–105 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Mao, F. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Meng, J. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci. Rev. 1, 521–542 (2014).

    Article  Google Scholar 

  9. Zheng, X., Bi, S., Wang, X. & Meng, J. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500, 199–202 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Bi, S., Wang, Y., Guan, J., Sheng, X. & Meng, J. Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 514, 579–584 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Meng, Q. J. et al. New gliding mammaliaforms from the Jurassic. Nature 548, 291–296 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Mao, F. Y. & Meng, J. A new haramiyidan mammal from the Jurassic Yanliao Biota and comparisons with other haramiyidans. Zool. J. Linn. Soc. 186, 529–552 (2019).

    Article  Google Scholar 

  13. Luo, Z.-X. Developmental patterns in Mesozoic evolution of mammal ears. Annu. Rev. Ecol. Evol. Syst. 42, 355–380 (2011).

    Article  Google Scholar 

  14. Meng, J., Wang, Y. & Li, C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 181–185 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Harper, T. & Rougier, G. W. Petrosal morphology and cochlear function in Mesozoic stem therians. PLoS ONE 14, e0209457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huttenlocker, A. K., Grossnickle, D. M., Kirkland, J. I., Schultz, J. A. & Luo, Z.-X. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558, 108–112 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Meng, J. et al. A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution. J. Anat. 236, 50–71 (2020).

    Article  PubMed  Google Scholar 

  18. Jenkins, F. A. Jr, Gatesy, S. M., Shubin, N. H. & Amaral, W. W. Haramiyids and Triassic mammalian evolution. Nature 385, 715–718 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Hahn, G. Neue Zähne von Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten. Palaeontographica Abt. A Paläozool. Stratigr. 142, 1–15 (1973).

    Google Scholar 

  20. Meng, J., Bi, S., Zheng, X. & Wang, X. Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear. J. Morphol. 279, 441–457 (2018).

    Article  PubMed  Google Scholar 

  21. Kermack, K. A., Mussett, F. & Rigney, H. W. The lower jaw of Morganucodon. Zool. J. Linn. Soc. 53, 87–175 (1973).

    Article  Google Scholar 

  22. Mao, F., Liu, C., Chase, M. H., Smith, A. K. & Meng, J. Exploring ancestral phenotypes and evolutionary development of the mammalian middle ear based on Early Cretaceous Jehol mammals. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwaa188 (2020).

  23. Kermack, K. A., Kermack, D. M., Lees, P. M. & Mills, J. R. E. New multituberculate-like teeth from the Middle Jurassic of England. Acta Palaeontol. Pol. 43, 581–606 (1998).

    Google Scholar 

  24. Butler, P. M. & Hooker, J. R. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontol. Pol. 50, 185–207 (2005).

    Google Scholar 

  25. Averianov, A. O. et al. Haramiyidan mammals from the Middle Jurassic of western Siberia, Russia. Part 1: Shenshouidae and Maiopatagium. J. Vertebr. Paleontol. 39, e1669159 (2019).

    Article  Google Scholar 

  26. Martin, T., Averianov, A. O. & Pfretzschner, H. U. Mammals from the Late Jurassic Qigu Formation in the southern Junggar Basin, Xinjiang, northwest China. Palaeobio. Palaeoenv. 90, 295–319 (2010).

    Article  Google Scholar 

  27. Averianov, A. O. et al. A new euharamiyidan mammaliaform from the Lower Cretaceous of Yakutia, Russia. J. Vertebr. Paleontol. 39, e1762089 (2020).

    Article  Google Scholar 

  28. Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature 581, 421–427 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Cifelli, R. L. & Davis, B. M. Jurassic fossils and mammalian antiquity. Nature 500, 160–161 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Bensley, B. A. On the identification of Meckelian and mylohyoid grooves in the jaws of Mesozoic and recent Mammalia. Univ. Tor. Stud. Biol. Ser. 3, 75–81 (1902).

    Google Scholar 

  31. Simpson, G. G. Mesozoic Mammalia. XII. The internal mandibular groove in Jurassic mammals. Am. J. Sci. 14, 461–470 (1928).

    Article  ADS  Google Scholar 

  32. Burford, C. M. & Mason, M. J. Early development of the malleus and incus in humans. J. Anat. 229, 857–870 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wible, J. R. & Spaulding, M. On the cranial osteology of the African palm civet, Nandina binotata (Gray, 1830) (Mammalia, Carnivora, Feliformia). Ann. Carnegie Mus. 82, 1–114 (2013).

    Article  Google Scholar 

  34. Fleischer, G. Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Saugetierkdl. Mitt. 21, 131–239 (1973).

    Google Scholar 

  35. Zeller, U. in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (eds Szalay, F. S. et al.) 95–107 (Springer, 1993).

  36. Doran, A. H. G. Morphology of the mammalian ossicula auditûs. Trans. Linnean Soc. Lond. 2nd Ser. Zool. 1, 371–497 (1878).

    Article  Google Scholar 

  37. Luo, Z.-X., Chen, P., Li, G. & Chen, M. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446, 288–293 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. McClain, J. A. The development of the auditory ossicles of the opossum (Didelphys virgininia). J. Morphol. 64, 211–265 (1939).

    Article  Google Scholar 

  39. Sánchez-Villagra, M. R., Gemballa, S., Nummela, S., Smith, K. K. & Maier, W. Ontogenetic and phylogenetic transformations of the ear ossicles in marsupial mammals. J. Morphol. 251, 219–238 (2002).

    Article  PubMed  Google Scholar 

  40. Anson, B. J., Hanson, J. S. & Richany, S. F. Early embryology of the auditory ossicles and associated structures in relation to certain anomalies observed clinically. Ann. Otol. Rhinol. Laryngol. 69, 427–447 (1960).

    Article  CAS  PubMed  Google Scholar 

  41. Whyte, J. R. et al. Fetal development of the human tympanic ossicular chain articulations. Cells Tissues Organs 171, 241–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Rodríguez-Vázquez, J. F., Yamamoto, M., Abe, S., Katori, Y. & Murakami, G. Development of the human incus with special reference to the detachment from the chondrocranium to be transferred into the middle ear. Anat. Rec. (Hoboken) 301, 1405–1415 (2018).

    Article  CAS  Google Scholar 

  43. Anthwal, N., Fenelon, J. C., Johnston, S. D., Renfree, M. B. & Tucker, A. S. Transient role of the middle ear as a lower jaw support across mammals. eLife 9, e57860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo, Z.-X., Gatesy, S. M., Jenkins, F. A., Jr, Amaral, W. W. & Shubin, N. H. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc. Natl Acad. Sci. USA 112, E7101–E7109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luo, Z. & Crompton, A. W. Transformation of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J. Vertebr. Paleontol. 14, 341–374 (1994).

    Article  Google Scholar 

  46. Rougier, G. W., Wible, J. R. & Novacek, M. J. Middle-ear ossicles of the multituberculate Kryptobaatar from the Mongolian Late Cretaceous: implications for the mammaliamorph relationships and the evolution of the auditory apparatus. Am. Mus. Novit. 3187, 1–43 (1996).

    Google Scholar 

  47. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  48. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8, https://doi.org/10.1109/GCE.2010.5676129 (IEEE, 2010).

  50. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Wagner, P. J. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biol. Lett. 8, 143–146 (2012).

    Article  PubMed  Google Scholar 

  53. Harrison, L. B. & Larsson, H. C. E. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst. Biol. 64, 307–324 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–404 (2010).

    Article  MathSciNet  PubMed  MATH  ADS  Google Scholar 

  55. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  56. Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLOS Comput. Biol. 10, e1003919 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  57. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    Article  PubMed  Google Scholar 

  58. Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).

    Article  Google Scholar 

  59. Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mamm. 99, 1–14 (2018).

    Article  Google Scholar 

  60. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2004).

    Google Scholar 

  62. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  63. Gunnell, G. F. et al. Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar’s aye-aye. Nat. Commun. 9, 3193 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  64. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hahn, G., Sigogneau-Russell, D. & Wouters, G. New data on Theroteinidae: their relations with Paulchoffatiidae and Haramiyidae. Geol. Paleontol. 23, 205–215 (1989).

    Google Scholar 

  67. King, B. & Beck, R. M. D. Tip dating supports novel resolutions of controversial relationships among early mammals. Proc. R. Soc. Lond. B 287, 20200943 (2020).

    Google Scholar 

  68. Gates, G. R., Saunders, J. C., Bock, G. R., Aitkin, L. M. & Elliott, M. A. Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J. Acoust. Soc. Am. 56, 152–156 (1974).

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Sansom, R. S., Choate, P. G., Keating, J. N. & Randle, E. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biol. Lett. 14, 20180263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hagenbach, E. Ueber ein besonderes, mit dem Hammer der Säugethiere in Verbindung stehendes Knöchelchen. Arch. Anat. Physiol. Wissensch. Medizin 1841, 46–54 (1841).

    Google Scholar 

  71. Maier, W. & Ruf, I. The anterior process of the malleus in Cetartiodactyla. J. Anat. 228, 313–323 (2016).

    Article  PubMed  Google Scholar 

  72. Broom, R. On the structure of the skull in Chrysochloris. Proc. Zool. Soc. Lond. 86, 449–458 (1916).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Bowden for his illustrations; S. Xie for specimen preparation; Z. Yin and T. Stecko for computed tomography scanning; and X. Xu for assistance and discussion. The study was supported by the National Science Foundation of China (41688103,41728003), the Double First-Class joint programme of Yunnan Science and Technology Department and Yunnan University (2018FY001-005), China–Myanmar Joint Laboratory for Ecological and Environmental Conservation and US National Science Foundation grant DEB 1654949.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and J.R.W. conceived the study, undertook comparative and analytical work and wrote the paper; S.L.S. performed Bayesian analyses and edited the manuscript; H.H. contributed to the virtual reconstructions of the skull; and J.W., S.L.S. and B.G. contributed to fossil interpretation and provided feedback on the paper.

Corresponding authors

Correspondence to John R. Wible or Shundong Bi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Robin Beck, Simone Hoffmann and Guillermo Rougier for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Cladograms to illustrate various hypotheses regarding haramiyidan relationships.

The Middle Jurassic Tiaojishan haramyidans are here included in Euharamiyida10 (a junior synonym of Haramiyida66 in our phylogenetic analysis (Supplementary Information)). Clades considered to be close relatives of euharamiyidans are in blue in each tree (simplified from the originals). a, Euharamiyidans are in a monophyletic Haramiyida, positioned outside of Mammalia (parsimony and Bayesian analyses in ref. 4). b, Euharamiyidans are in a monophyletic Haramiyida, positioned within Mammalia in Allotheria with multituberculates; the gondwanatherian Vintana (not shown) is within Trechnotheria (parsimony and Bayesian analyses in ref. 3). c, Haramiyidans are polyphyletic; euharamiyidans fall within Mammalia in Allotheria with multituberculates, and Thomasia and Haramiyavia form a clade with tritylodontids outside Mammaliaformes; gondwanatherians (not shown) are sister to multituberculates (parsimony analysis in ref. 28). d, Haramiyidans are polyphyletic; euharamiyidans fall within Mammalia, and Thomasia and Haramiyavia form a clade with tritylodontids outside Mammaliaformes; the gondwanatherian Vintana (not shown) is within Euharamiyida (tip-dated Bayesian analysis in ref. 67). A, Allotheria; M, Mammalia; Mf, Mammaliaformes; T, Theria.

Extended Data Fig. 2 Dentition of V. diplomylos (IMMNH-PV01699A).

ac, Upper left dentition in buccal (a), occlusal (b) and lingual (c) views. df, Lower left dentition in buccal (d), occlusal (e) and lingual (f) views. Regarding the numbering of the incisors, all haramiyidans for which the dentition is known have one upper and lower incisor (except for Xianshou linglong with two upper incisors10). The distal enlarged incisor was identified as I2 with a tiny I1 mesial to it; the lower incisor was identified as i2 as it occludes with upper I2. DI2, deciduous upper incisor; di2, deciduous lower incisor; I2, upper incisor; i2, lower incisor; M1, upper first molar; m1, lower first molar; M2, upper second molar; m2, lower second molar; P3, upper third premolar; P4, upper fourth premolar; p4, lower fourth premolar.

Extended Data Fig. 3 Reconstruction of the skull of V. diplomylos (IMMNH-PV01699A and B).

a, Skull in lateral view. b, Cranium in dorsal view. ce, Left mandible in occlusal (c), lateral (d) and medial (e) views. an, angular process; cc, coronoid crest; co, mandibular condyle; cp, coronoid process; DI2, deciduous upper incisor; di2, deciduous lower incisor; ethf, ethmoidal foramen; fr, frontal; iof, infraorbital foramen; ju, jugal; lac, lacrimal; m1, lower first molar; m2, lower second molar; maf, masseteric fossa; mas, mandibular symphysis; mef, mental foramen; mf, mandibular foramen; mx, maxilla; na, nasal; P3, upper third premolar; p4, lower fourth premolar; pa, parietal; pmx, premaxilla; ptf, pterygoid fossa; smx, septomaxilla; sq, squamosal; vc, ventral crest.

Extended Data Fig. 4 Reconstructions of auditory apparatus in V. diplomylos on the basis of the holotype versus the referred specimen.

a, Reconstruction on the basis of the Vilevolodon holotype4, which has more-fragmentary auditory elements: the incus is shown with a trochlea and dorsal plate (as in Morganucodon) (Fig. 3a) in a rostrocaudal incudomallear articulation, and the malleus includes ossified Meckel’s cartilage and surangular. b, c, Reconstruction on the basis of the Vilevolodon referred specimen (IMMNH-PV01699A) with well-preserved auditory elements in ventral (b) and dorsal (c) views: the incus is flat and has a dorsoventral incudomallear articulation, and the malleus does not have an ossified Meckel’s cartilage or surangular. Colours for the auditory elements are as in Fig. 1.

Extended Data Fig. 5 Reinterpretation of auditory apparatus of A. allinhopsoni.

ac, e, h, Arboroharamiya allinhopsoni, left auditory apparatus. a, Photograph of the holotype in ventral view (derived from extended data figure 5a of ref. 3). b, c, Reconstruction in ventral (b) and dorsal (c) views (modified from extended data figure 5e, f of ref. 3). e, h, The reconstruction proposed in this Article, in ventral (e) and dorsal (h) views (Supplementary Information). d, g, Ornithorhynchus anatinus (Carnegie Museum 50815), left auditory apparatus rendered from computed tomography scans in ventral (d) and dorsal (g) views. f, i, Vilevolodon diplomylos (IMMNH-PV01699A), left auditory apparatus in ventral (f) and dorsal (i) views. The crus breve of the incus in e and h is based on ref. 17. Colours for the auditory elements are as in Fig. 1; stapes in purple; tympanic membrane (grey) is reconstructed on the ventral views in b, d35,68, f. ac, anterior crus of ectotympanic; al, anterior limb of ectotympanic; apm, anterior process of malleus; asa, anterior process of surangular; cb, crus breve; fv, fenestra vestibuli; gf, glenoid fossa; hy, hyoid element; ic, incus; lp, lenticular process; mab, mallear body; mm, manubrium of malleus; mp, medial process of malleus; oc, occipital condyle; pc, posterior crus of ectotympanic; pf, perilymphatic foramen; pic, stapedial process of incus; pism, process for insertion of stapedius muscle of stapes; pl, posterior limb of ectotympanic; pm, promontorium; ppr, paroccipital process of petrosal; prs, posterior ridge of surangular; pss, posterior surface of surangular; ptp, posttympanic process of squamosal; rl, reflected lamina of ectotympanic; rtm, ridge for attachment for anterior part of tympanic membrane; sa, surangular; sf, stapedius fossa; spg, groove for stapedial artery; st, stapes; tm, transverse part of malleus; ts, tympanic sulcus; ty-d, lateral ectotympanic part presumably equivalent to dorsal part of angular; ty-r, ectotympanic part presumably equivalent to reflected lamina.

Extended Data Fig. 6 Reinterpretation of ectotympanic of Qishou and Arboroharamiya.

ac, Qishou jintzang, the so-called left ectotympanic in ventral (a) and dorsal (b) views, derived from figure 8c, d of ref. 17; interpreted here as the left malleus with broken anterior process and incus in dorsal view (c). d, Arboroharamiya allinhopsoni, the so-called left ectotympanic in ventral view, derived from figure 3 of ref. 17. e, f, Tachyglossus aculeatus (Carnegie Museum 50812), isolated left ectopterygoid bone and the left basicranium in ventral view. g, Arboroharamiya jenkinsi, the so-called left ectotytmpanic in ventral view, derived from figure 7c of ref. 17. h, i, Ornithorhynchus anatinus (Carnegie Museum 50815), isolated left ectopterygoid bone and the left basicranium in ventral view. Colours for the auditory elements are as in Fig. 1. api, anterior prominence of incus; apm(br), anterior process of malleus (broken); arty, anterior edge of ectotympanic; cb, crus breve; cfm, contact area for malleus; ep, ectopterygoid; frt, fracture; mm, manubrium of malleus; prty, posterior edge of ectotympanic; rtm, ridge for attachment of anterior part of tympanic membrane; sp, stapedial process of incus; ty-d, lateral ectotympanic part presumably equivalent to dorsal part of angular; ty-r, ectotympanic part presumably equivalent to reflected lamina.

Extended Data Fig. 7 Simplified strict-consensus parsimony tree, highlighting relationships and relative ages of key mammalian groups.

The full tree is shown in Extended Data Fig. 8. Nodes are not time-calibrated. A, Allotheria; C, Cladotheria; El, Eleutherodontidae; Eu, Eutriconodonta; G, Gondwanatheria; Ha, Haramiyida; M, Mammalia; Mf, Mammaliaformes; Mt, Multituberculata; Sp, Spalacotherioidea; T, Theria; Tr, Trechnotheria.

Extended Data Fig. 8 Full parsimony consensus tree.

The dataset comprises 130 taxa and 509 morphological characters. The strict consensus tree of 30 equally most-parsimonious trees was found in TNT47. Consensus tree length = 2,871; consistency index = 0.300; retention index = 0.784. The simplified version of this consensus tree is presented in Extended Data Fig. 7. The allotherians (Haramiyavia, Cifelliodon, haramiyidans, multituberculates and gondwanatherians) are highlighted in blue. A, Allotheria; Au, Australosphenida; C, Cladotheria; El, Eleutherodontidae; Eu, Eutriconodonta; G, Gondwanatheria; Ha, Haramiyida; M, Mammalia; Mf, Mammaliaformes; Mt, Multituberculata; Sp, Spalacotherioidea; T, Theria; Tr, Trechnotheria.

Extended Data Fig. 9 Bayesian consensus tree.

Fifty-per-cent majority rule consensus tree for Mesozoic mammals from a tip-dated analysis using Bayesian inference in MrBayes64. Tip-dating analysis confirms that mammals originated in the late Triassic (213.82 million years ago (207.98, 221.48 95% highest posterior density intervals)); however, the topology is different from the strict-consensus tree inferred from the parsimony analysis69. Allotherians are in blue.

Extended Data Fig. 10 Ontogeny of auditory ossicles in extant therian mammals.

a, Right malleus, incus and gonial on postnatal days 0, 12 and 30 of the didelphid marsupial Monodelphis domestica in medial view (redrawn from ref. 39), anterior to the left and dorsal to the top. Incus is initially dorsal to the malleus and shifts caudally in later ontogenetic stages. b, Left malleus of the juvenile felid carnivoran Felis pardus (Carnegie Museum of Natural History (CM) 21006) in ventral view, medial to the left and anterior to the top, showing the ossiculum accessorium mallei70 or processus internus praearticularis71. c, Left ear region of newborn golden mole Amblysomus corriae in ventral view, medial to the left and anterior to the top (modified from ref. 72), showing the small, rod-like dermal element medial to the gonial that is posited to be the surangular. Colours for the ossicles are as in Fig. 1.

Supplementary information

Supplementary Information

This file contains a table of contents on extended data figures 1-10 and supplementary information parts A-G, and Supplementary Information Parts A-G.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wible, J.R., Guo, B. et al. A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan. Nature 590, 279–283 (2021). https://doi.org/10.1038/s41586-020-03137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-03137-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing